Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Org Chem ; 89(5): 3605-3611, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364322

RESUMO

D-A type axially chiral biphenyl luminescent molecules are directly constructed through ingenious functionalization of the octahydro-binaphthol skeleton without optical resolution. The circularly polarized organic light-emitting diodes based on them display remarkable circularly polarized electroluminescence emission, a high luminance of >10 000 cd m-2, a maximum external quantum efficiency of 6.6%, and an extremely low-efficiency roll-off. This work provides a universal strategy for developing efficient and diverse axially chiral biphenyl emitters.

2.
Angew Chem Int Ed Engl ; 63(7): e202318742, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153344

RESUMO

Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.

3.
Molecules ; 28(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687088

RESUMO

Developing new organic reactions with excellent atom economy and high selectivity is significant and urgent. Herein, by ingeniously regulating the reaction conditions, highly selective transformations of propargylamines have been successfully implemented. The palladium-catalyzed cyclization of propargylamines generates a series of functionalized quinoline heterocycles, while the base-promoted isomerization of propargylamines affords diverse 1-azadienes. Both reactions have good functional group tolerance, mild conditions, excellent atom economy and high yields of up to 93%. More importantly, these quinoline heterocycles and 1-azadienes could be flexibly transformed into valuable compounds, illustrating the validity and practicability of the propargylamine-based highly selective reactions.

4.
J Org Chem ; 87(5): 3234-3241, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170306

RESUMO

The first aryl iodide catalyzed intramolecular C-H amination of phenylurea has been disclosed for high-efficiency synthesis of benzimidazolone derivatives in excellent yields (up to 97%) by an operationally simple one-step organocatalytic oxidative process. Fluorinated protic alcohols can efficiently accelerate the conversion of this transformation. The straightforward method has good functional group tolerance and can be performed with an inexpensive and readily accessible catalyst with high proficiency.

5.
J Am Chem Soc ; 142(10): 4756-4761, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32090555

RESUMO

Materials with circularly polarized luminescence (CPL) activity have immense potential applications in molecular switches, optical sensors, information storage, asymmetric photosynthesis, 3D optical displays, biological probe, and spintronic devices. However, the achiral architectures of most of the luminophores severely limit their practical needs. Within this context, molecular ferroelectrics with striking chemical variability and structure-property flexibility bring light to the assembly of CPL-active ferroelectric materials. Herein, we report organic-inorganic perovskite enantiomorphic ferroelectrics, (R)- and (S)-3-(fluoropyrrolidinium)MnBr3, undergoing a 222F2-type ferroelectric phase transition at 273 K. Their mirror relationships are verified by both single-crystal X-ray diffraction and vibrational circular dichroism (VCD). Furthermore, the corresponding Cotton effect for two chiral crystals was captured by mirror CPL activity. This may be assigned to the inducing interaction between the achiral luminescent perovskite framework and chiral organic components. As far as we know, this is the first molecular ferroelectric with CPL activity. Accordingly, this will inspire intriguing research in molecular ferroelectrics with CPL activity and holds great potential for the development of new optoelectronic devices.

6.
J Am Chem Soc ; 142(41): 17756-17765, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33021373

RESUMO

This work describes a strategy to produce circularly polarized thermally activated delayed fluorescence (CP-TADF). A set of two structurally similar organic emitters SFST and SFOT are constructed, whose spiro architectures containing asymmetric donors result in chirality. Upon grafting within the spiro frameworks, the donor and acceptor are fixed proximally in a face-to-face manner. This orientation allows intramolecular through-space charge transfer (TSCT) to occur in both emitters, leading to TADF properties. The donor units in SFST and SFOT have a sulfur and oxygen atom, respectively; such a subtle difference has great impacts on their photophysical, chiroptical, and electroluminescence (EL) properties. SFOT exhibits greatly enhanced EL performance in doped organic light-emitting diodes, with external quantum efficiency (EQE) up to 23.1%, owing to the concurrent manipulation of highly photoluminescent quantum efficiency (PLQY, ∼90%) and high exciton utilization. As a comparison, the relatively larger sulfur atom in SFST introduces heavy atom effects and leads to distortion of the molecular backbone that lengthens the donor-acceptor distance. SFST thus has lower PLQY and faster nonradiative decay rate. The collective consequence is that the EQE value of SFST, i.e., 12.5%, is much lower than that of SFOT. The chirality of these two spiro emitters results in circularly polarized luminescence. Because SFST has a more distorted molecular architecture than SFOT, the luminescence dissymmetry factor (|glum|) of circularly polarized luminescence of one enantiomer of the former, namely, either (S)-SFST or (R)-SFST, is almost twice that of (S)-SFOT/(R)-SFOT. Moreover, the CP organic light-emitting diodes (CP-OLEDs) show obvious circularly polarized electroluminescence (CPEL) signals with gEL of 1.30 × 10-3 and 1.0 × 10-3 for (S)-SFST and (S)-SFOT, respectively.

7.
Chemistry ; 26(25): 5694-5700, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953964

RESUMO

Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI -catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide-alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide-alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide-alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.

8.
Chemistry ; 25(22): 5672-5676, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30829426

RESUMO

Chiral materials with circularly polarized luminescence (CPL) are potentially applicable for 3D displays. In this study, by decorating the pyridinyl-helicene ligands with -CF3 and -F groups, the platinahelicene enantiomers featured superior configurational stability, as well as high sublimation yield (>90 %) and clear CPPL properties, with dissymmetry factors (|gPL |) of approximately 3.7×10-3 in solution and about 4.1×10-3 in doped film. The evaporated circularly polarized phosphorescent organic light-emitting diodes (CP-PhOLEDs) with two enantiomers as emitters exhibited symmetric CPEL signals with |gEL | of (1.1-1.6)×10-3 and decent device performances, achieving a maximum brightness of 11 590 cd m-2 , a maximum external quantum efficiency up to 18.81 %, which are the highest values among the reported devices based on chiral phosphorescent PtII complexes. To suppress the effect of reverse CPEL signal from the cathode reflection, the further implementation of semitransparent aluminum/silver cathode successfully boosts up the |gEL | by over three times to 5.1×10-3 .

9.
Angew Chem Int Ed Engl ; 58(48): 17220-17225, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31559680

RESUMO

Pure organic materials with intrinsic room-temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room-temperature phosphorescence (RTP) species based upon the through-space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP-BrCz and PPCP-BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non-halogen-containing electron-withdrawing units, PCP-TNTCz and PCP-PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP-TNTCz and PCP-PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as -1.2×10-2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP-TNTCz enantiomers in crystalline state.

10.
Angew Chem Int Ed Engl ; 57(35): 11316-11320, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974588

RESUMO

Multi-resonance induced by boron and nitrogen atoms in opposite resonance positions endows a thermally activated delayed fluorescence (MR-TADF) emitter with a strikingly small full width at half maximum of only 26 nm and excellent photoluminescence quantum yield of up to 97.48 %. The introduction of a carbazole unit in the para position of the B-substituted phenyl-ring can significantly boost up the resonance effect without compromising the color fidelity, subsequently enhancing the performances of the corresponding pure blue TADF-OLED, with an outstanding external quantum efficiency (EQE) up to 32.1 % and low efficiency roll-off, making it one of the best TADF-OLEDs in the blue region to date. Furthermore, utilizing this material as host for a yellow phosphorescent emitter, the device also shows a significantly reduced turn-on voltage of 3.2 V and an EQEmax of 22.2 %.

11.
Org Biomol Chem ; 15(33): 6901-6904, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28786465

RESUMO

A solvent controlled regioselective metal-free synthesis of iodo-substituted N-heterocycles has been developed. This protocol undergoes a cascade iodination/cyclization/oxidation/aromatization pathway to afford multi-halogenated quinolines from readily available propargylamines under mild conditions.

12.
IEEE Trans Cybern ; PP2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159029

RESUMO

The event-based H∞ control problem is investigated for a class of nonhomogeneous Markov jump systems (MJSs) with partially unknown transition probabilities (TPs). The MJS is characterized by a piecewise nonhomogeneous Markovian chain, where the switching of the system TP matrix is governed by a higher-level chain. A hidden Markov model (HMM) is employed to observe the system mode, which cannot always be correctly detected in practice. Under this framework, the partially unknown TPs existing in both higher-level TPs (HTPs) and conditional TPs (CTPs) are taken into account for practical consideration. Additionally, an observed-mode-dependent event-triggered mechanism (ETM) is employed to design an asynchronous controller, which is expected to alleviate the burden of the communication network. Evidently, the considered scenario is fairly general and covers some special cases. With the above consideration, sufficient conditions are established to guarantee stochastic stability of the resulting closed-loop system with a prescribed H∞ performance. Finally, two examples are presented to demonstrate the effectiveness and applicability of the proposed method.

13.
IEEE Trans Cybern ; 54(3): 1947-1959, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37610889

RESUMO

The neural network-based adaptive backstepping method is an effective tool to solve the cooperative tracking problem for nonlinear multiagent systems (MASs). However, this method cannot be directly extended to the case without continuous communication. It is because the discontinuous communication results in discontinuous signals in this case, the standard backstepping method is inapplicable. To solve this problem, a hierarchical design scheme that involves distributed cooperative estimators and neural network-based decentralized tracking controllers is proposed. By introducing a dynamic event-triggered mechanism, cooperative intermediate parameter estimators are first designed to estimate the unknown parameters of the leader. By using the interpolation polynomial method, these estimators are extended to smooth estimators with high-order derivatives to guarantee that the backstepping method is applicable. Based on the state of the smooth estimators, a backstepping-based decentralized neural network tracking controller is designed. It is shown that the tracking errors are asymptotically convergent and all the signals in the closed-loop systems are bounded. Compared with the existing cooperative tracking results for nonlinear MASs with event-triggered communication, a more general class of MASs is considered in this article and a better performance in terms of asymptotic tracking is achieved. Finally, a simulation example is given to show the effectiveness of our developed method.

14.
IEEE Trans Cybern ; PP2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288055

RESUMO

The robust LQ optimal regulator problem for discrete-time uncertain singular Markov jump systems (SMJSs) is solved by introducing a new quadratic cost function established by the penalty function method, which combines the penalty function and the weighting matrices. First, the indefinite robust optimal regulator problem for uncertain SMJSs is transformed into the robust optimal regulator problem with positive definite weighting matrices for uncertain Markov jump systems (MJSs). The transformed robust LQ problem is settled by the robust least-squares method, and the condition of the existence and analytic form of the robust optimal regulator are proposed. On the infinite horizon, the optimal state feedback is obtained, which can guarantee the regularity, causality, and stochastic stability of the corresponding optimal closed-loop system and eliminate the uncertain parameters of the closed-loop system. A numerical example and a practical example of DC motor are used to verify the validity of the conclusions.

15.
IEEE Trans Cybern ; 54(9): 5360-5368, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38345963

RESUMO

Asymptotic observability of distributed Boolean networks (DBNs) is studied in this article. Via a parallel extension method, asymptotic observability of the original system is converted to reachability at a fixed point of the extended system. Based on the structure matrix of the extended system, a necessary and sufficient condition is presented for asymptotic observability. Further, for unobservable systems, mode-dependent pinning control is first introduced and applied to achieve asymptotic observability, including the selections of pinning nodes, the design of output feedback controls, and the adding approaches. Then, a set of matrices is defined for the construction of the desired structure matrix. Based on it, a necessary condition is given to guarantee the solvability of the corresponding output feedback controls and the adding approaches. Finally, a numerical example is presented to show the effectiveness of the obtained results.

16.
IEEE Trans Cybern ; PP2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093678

RESUMO

This article intends to study the asynchronous control problem for 2-D Markov jump systems (MJSs) with nonideal transition probabilities (TPs) under the Roesser model. Two practical considerations motivate the current work. First, considering that the system mode cannot always be observed accurately, a hidden Markov model (HMM) is adopted to describe the relationship between the mismatched modes. Second, considering that the TPs information related to the Markov process and the observation process is difficult to obtain, the nonideal TPs (unknown or uncertain) are simultaneously considered on the two processes. Under the considerations, several new sufficient conditions are developed for concerned closed-loop 2-D MJSs with nonideal TPs, by which the asymptotic mean square stability is ensured with an H∞ performance index. A nonconservative separation strategy is utilized to decouple the system mode TPs and the observation TPs to facilitate the analysis of nonideal TPs. An unified LMI-based condition is finally developed for the concerned closed-loop 2-D MJSs with/without nonideal TPs, showing more satisfactory conservatism than that in the literature. In the end, we present two examples to validate the superiority of the proposed design method.

17.
IEEE Trans Cybern ; 53(5): 2944-2954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34847051

RESUMO

In this article, the l1 -induced performance of the stochastic switched Boolean control network (BCN) is investigated. The switched signal is considered to follow a time-varying probability distribution, the switching of which is considered to have a random dwell time. The asynchronous state feedback control (SFC) is studied to achieve the control objective. This kind of control can avoid the failure of the control due to the inconsistency between the system mode and the control mode, so the results obtained are more general. Using the semitensor product of matrices, the algebraic form of the considered BCN is represented. Under this framework, sufficient conditions are obtained to ensure that the closed-loop system is stochastic stabilized with a prescribed l1 -induced performance level γ . Parameters can be solved by inequalities. In addition, when the dwell time converges to infinity, the probability distribution of the switched signal becomes fixed. Necessary and sufficient conditions are presented to ensure the stabilization of the closed system under asynchronous SFC as well as the design of the asynchronous SFC. Then, sufficient condition is obtained for the prescribed l1 -induced performance level. Examples are presented to show the effectiveness of the obtained results.

18.
ISA Trans ; 142: 188-197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517950

RESUMO

This paper is devoted to dealing with the problem of global attitude synchronization for quaternion-based multiple rigid bodies, regardless of the general directed topologies of networks and arbitrary initial orientations of rigid bodies. A novel canonical quaternion is constructed to represent all physical attitudes of rigid bodies such that the pseudo-synchronization of their quaternion representations (namely, the quaternions' vector parts of all rigid bodies reach agreement on some identical value, whereas their scalar parts do not) can be precluded. Moreover, to reduce unnecessary communication requirements of rigid bodies, a hybrid triggering mechanism involving both the time regulation and neighbors' non-real-time information is proposed, with which a distributed protocol is developed by leveraging the constructed canonical quaternion. It is shown that the presented protocol for rigid bodies over directed networks can simultaneously realize the global attitude synchronization and naturally exclude the Zeno behavior. In addition, these observations are also validated via the application of our hybrid triggering protocol to networked spacecraft.

19.
IEEE Trans Cybern ; PP2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824312

RESUMO

In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park's integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.

20.
IEEE Trans Cybern ; 53(1): 151-160, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34236989

RESUMO

This article considers the security-based passivity problem for a class of discrete-time Markov jump systems in the presence of deception attacks, where the deception attacks aim to change the transmitted signal. Considering the impact of deception attacks on network disruption, it causes the existence of time-varying delays in signal transmission inevitably, which makes the controlled system and the controller work asynchronously. The asynchronous control method is employed to overcome the nonsynchronous phenomenon between the system mode and controller mode. On the other hand, to reduce the frequency of data transmission, a resilient asynchronous event-triggered control scheme taking deception attacks into account is designed to save communication resources, and the proposed controller can cover some existing ones as special examples. Moreover, different triggering conditions corresponding to different jumping modes are developed to decide whether state signals should be transferred. A new stability criterion is derived to ensure the passivity of the resultant system although there exist deception attacks. Finally, a simulation example is given to verify the theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA