Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 585-615, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206989

RESUMO

Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.


Assuntos
Disfunção Erétil , Neoplasias , Masculino , Humanos , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Disfunção Erétil/tratamento farmacológico , Citrato de Sildenafila/uso terapêutico , GMP Cíclico/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Proc Natl Acad Sci U S A ; 120(51): e2302161120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079544

RESUMO

Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Lactente , Humanos , Pré-Escolar , Rotavirus/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Replicação Viral , Diarreia , Infecções por Rotavirus/genética
3.
Small ; 20(2): e2305606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670544

RESUMO

Li-rich Mn-based cathodes have been regarded as promising cathodes for lithium-ion batteries because of their low cost of raw materials (compared with Ni-rich layer structure and LiCoO2 cathodes) and high energy density. However, for practical application, it needs to solve the great drawbacks of Li-rich Mn-based cathodes like capacity degradation and operating voltage decline. Herein, an effective method of surface modification by benzene diazonium salts to build a stable interface between the cathode materials and the electrolyte is proposed. The cathodes after modification exhibit excellent cycling performance (the retention of specific capacity is 84.2% after 350 cycles at the current density of 1 C), which is mainly attributed to the better stability of the structure and interface. This work provides a novel way to design the coating layer with benzene diazonium salts for enhancing the structural stability under high voltage condition during cycling.

4.
J Virol ; 97(4): e0038323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039654

RESUMO

Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.


Assuntos
Infecções por Caliciviridae , Técnicas de Cultura , Sapovirus , Replicação Viral , Humanos , Ácidos e Sais Biliares/farmacologia , Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Intestino Delgado/virologia , Sapovirus/crescimento & desenvolvimento , Sapovirus/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Técnicas de Cultura/métodos , Interações entre Hospedeiro e Microrganismos , Meios de Cultura/química , Linhagem Celular Tumoral , Diferenciação Celular
5.
Opt Lett ; 49(6): 1524-1527, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489441

RESUMO

Longitudinal detection of hemodynamic changes based on wearable devices is imperative for monitoring human healthcare. Photoacoustic effect is extremely sensitive to variations in hemoglobin. Therefore, wearable photoacoustic devices are apt to monitor human healthcare via the observation of hemodynamics. However, the bulky system and difficulties in miniaturizing and optimizing the imaging interface restrict the development of wearable photoacoustic devices for human use. In this study, we developed a wearable photoacoustic watch with a fully integrated system in a backpack that has a size of 450 mm × 300 mm × 200 mm and an affordable weight of 7 kg for an adult to wear. The watch has a size of 43 mm × 30 mm × 24 mm, weighs 40 g, and features a lateral resolution of 8.7 µm, a field of view (FOV) of 3 mm in diameter, and a motorized adjustable focus for optimizing the imaging plane for different individuals. We recruited volunteers to wear the watch and the backpack and performed in vivo imaging of the vasculatures inside human wrists under the conditions of walking and human cuff occlusion to observe hemodynamic variations during different physiological states. The results suggest that the focus shifting capability of the watch makes it suitable for different individuals, and the compact and stable design of the entire system allows free movements of humans.


Assuntos
Técnicas Fotoacústicas , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Diagnóstico por Imagem , Análise Espectral , Hemodinâmica
6.
Opt Lett ; 49(4): 798-801, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359185

RESUMO

Optical resolution photoacoustic microscopy (OR-PAM) is a hybrid imaging method for visualizing organelles due to the high spatial resolution and abundant optical contrast. Usually, OR-PAM employs high numerical aperture (NA) objectives and high-frequency ultrasonic detectors to resolve three-dimensional (3D) microstructures of cells. Expansion microscopy (ExM) provides a nanoscale resolution by isotropically enlarging cells instead of utilizing ultrahigh NA objectives. In this Letter, we report the development of photoacoustic expansion microscopy (PA-ExM) that combines the advantages of OR-PAM and ExM for 3D organelle imaging using near-infrared light. We evaluate the performance of PA-ExM using label-free melanoma cells, where the image quality of melanosome distributions in expanded cells using a 40× objective is comparable to that of unexpanded cells using an oil-immersed 100× objective. The results suggest that PA-ExM possesses the great potential to study organelles.


Assuntos
Microscopia , Técnicas Fotoacústicas , Microscopia/métodos , Melanossomas , Técnicas Fotoacústicas/métodos , Análise Espectral , Imagem Multimodal
7.
Opt Lett ; 49(10): 2637-2640, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748124

RESUMO

Optical-resolution photoacoustic microscopy (OR-PAM) excels in precisely imaging a biological tissue based on absorption contrast. However, existing OR-PAMs are confined by fixed compromises between spatial resolution and field of view (FOV), preventing the integration of large FOV and local high-resolution within one system. Here, we present a non-telecentric OR-PAM (nTC-PAM) that empowers efficient adaptation of FOV and spatial resolution to match the multi-scale requirement of diverse biological imaging. Our method allows for a large-scale transformation in FOV and even surpassing the nominal FOV of the objective with minimal marginal degradation of the lateral resolution. We demonstrate the advantage of nTC-PAM through multi-scale imaging of the leaf phantom, mouse ear, and cortex. The results reveal that nTC-PAM can switch the FOV and spatial resolution to meet the requirements of different biological tissues, such as large-scale imaging of the whole cerebral cortex and high-resolution imaging of microvascular structures in local brain regions.


Assuntos
Microscopia , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Microscopia/métodos , Orelha/diagnóstico por imagem , Orelha/irrigação sanguínea , Imagens de Fantasmas
8.
Cell Biochem Funct ; 42(4): e4078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898665

RESUMO

Zinc finger proteins (ZNFs) play a significant role in the initiation and progression of tumors. Nevertheless, the specific contribution of ZNF610 to lung adenocarcinoma (LUAD) remains poorly understood. This study sought is to elucidate the role of ZNF610 in LUAD. Transcript data of LUAD were obtained from The Cancer Genome Atlas Program (TCGA) database and processed via R program. The expression of ZNF610 was assessed in various cell lines. To compare the proliferative capacity of cells with or without ZNF610 silencing, CCK8, cell colony formation assay, and Celigo label-free cell counting assay were employed. Furthermore, transwell migration and invasion assays were conducted to evaluate the migratory and invasive abilities of the cells. The expression levels of genes and proteins were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot techniques. In different LUAD cells, the expression level of ZNF610 was found to be significantly higher in LUAD cells compared to MRC-5 and BASE-2B cells. Moreover, the silencing of ZNF610 resulted in a decrease in cell proliferation and migration abilities. Additionally, the apoptosis rate of cells increased upon silencing ZNF610. Notably, the proportion of cells in the G0/G1 phase increased, while the proportion of cells in the S phase decreased following ZNF610 silencing. Finally, ß-catenin and snail were identified as downstream targets of ZNF610 in cells. Our findings suggest that silencing ZNF610 could inhibit LUAD cell proliferation and migration, possibly through the downregulation of ß-catenin and snail.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Inativação Gênica , Linhagem Celular Tumoral , Apoptose
9.
Foodborne Pathog Dis ; 21(6): 378-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557159

RESUMO

The urgent need for comprehensive and systematic analyses of Shigella as the key pathogen led us to meticulously explore the epidemiology and molecular attributes of Shigella isolates. Accordingly, we procured 24 isolates (10 from Xinjiang and 14 from Wuhan, China) and performed serotype identification and antimicrobial susceptibility testing. Resistance gene detection and homology analysis by polymerase chain reaction and pulsed-field gel electrophoresis (PFGE), respectively, were performed for genetic diversity analysis. All isolates were identified as Shigella flexneri, with 70% (35.4-91.9%) and 30% (8.1-64.6%) of the Xinjiang isolates and 85.7% (56.2-97.5%) and 14.3% (2/14, 2.5-43.9%) of the Wuhan isolates belonging to serotype 2a and serotype 2b, respectively. All isolates displayed resistance to at least two antibiotics and complete resistance to ampicillin. Multidrug resistance (MDR) was recorded in 70.8% (48.8-86.6%) of isolates, with Xinjiang isolates exhibiting relatively higher resistance to ampicillin-sulbactam, piperacillin, ceftriaxone, and aztreonam. Conversely, Wuhan isolates displayed higher MDR and resistance to tetracycline, ciprofloxacin, levofloxacin, and cefepime relative to Xinjiang isolates. Molecular scrutiny of antibiotic-resistance determinants revealed that blaTEM was the main mechanism of ampicillin resistance, blaCTX-M was the main gene for resistance to third- and fourth-generation cephalosporins, and tetB was the predominant gene associated with tetracycline resistance. Four Xinjiang and seven Wuhan isolates shared T1-clone types (>85%), and two Xinjiang and one Wuhan isolates were derived from the T6 clone with a high similarity of 87%. Six PFGE patterns (T1, T2, T5, T6-3, T8, and T10) of S. flexneri were associated with MDR. Thus, there is a critical need for robust surveillance and control strategies in managing Shigella infections, along with the development of targeted interventions and antimicrobial stewardship programs tailored to the distinct characteristics of Shigella isolates in different regions of China.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Disenteria Bacilar , Eletroforese em Gel de Campo Pulsado , Variação Genética , Testes de Sensibilidade Microbiana , Shigella flexneri , China/epidemiologia , Antibacterianos/farmacologia , Humanos , Disenteria Bacilar/microbiologia , Disenteria Bacilar/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/genética , Shigella flexneri/isolamento & purificação , Shigella flexneri/classificação , Shigella/genética , Shigella/efeitos dos fármacos , Shigella/isolamento & purificação , Shigella/classificação , Sorogrupo , Reação em Cadeia da Polimerase
10.
Genomics ; 115(2): 110574, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758878

RESUMO

Chondrocyte senescence is a decisive component of age-related osteoarthritis, however, the function of small noncoding RNAs (sncRNAs) in chondrocyte senescence remains underexplored. Human hip joint cartilage chondrocytes were cultivated up to passage 4 to induce senescence. RNA samples were extracted and then analyzed using small RNA sequencing and qPCR. ß-galactosidase staining was used to detect the effect of sncRNA on chondrocyte aging. Results of small RNA sequencing showed that 279 miRNAs, 136 snoRNAs, 30 snRNAs, 102 piRNAs, and 5 rasiRNAs were differentially expressed in senescent chondrocytes. The differential expression of 150 sncRNAs was further validated by qPCR. Transfection of sncRNAs and ß-galactosidase staining were also performed to further revealed that hsa-miR-135b-5p, SNORA80B-201, and RNU5E-1-201 have the function to restrain chondrocyte senescence, while has-piR-019102 has the function to promote chondrocyte senescence. Our data suggest that sncRNAs have therapeutic potential as novel epigenetic targets in age-related osteoarthritis.


Assuntos
MicroRNAs , Osteoartrite , Pequeno RNA não Traduzido , Humanos , Condrócitos/metabolismo , Osteoartrite/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Pequeno RNA não Traduzido/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Epigênese Genética , Senescência Celular
12.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R589-R600, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878484

RESUMO

Androgen-deprivation therapy (ADT) is the primary systemic therapy for treating advanced or metastatic prostate cancer (PCa), which has improved survival outcomes in patients with PCa. However, ADT may develop metabolic and cardiovascular adverse events that impact the quality of life and lifespan in PCa survivors. The present study was designed to establish a murine model of ADT with a gonadotropin-releasing hormone (GnRH) agonist leuprolide and to investigate its effects on metabolism and cardiac function. We also examined the potential cardioprotective role of sildenafil (inhibitor of phosphodiesterase 5) under chronic ADT. Middle-aged male C57BL/6J mice received a 12-wk subcutaneous infusion via osmotic minipumps containing either saline or 18 mg/4 wk leuprolide with or without 1.3 mg/4 wk sildenafil cotreatment. Compared with saline controls, leuprolide treatment significantly reduced prostate weight and serum testosterone levels, confirming chemical castration in these mice. The ADT-induced chemical castration was not affected by sildenafil. Leuprolide significantly increased the weight of abdominal fat after 12-wk treatment without a change in total body weight, and sildenafil did not block the proadipogenic effect of leuprolide. No signs of left ventricular systolic and diastolic dysfunction were observed throughout the leuprolide treatment period. Interestingly, leuprolide treatment significantly elevated serum levels of cardiac troponin I (cTn-I), a biomarker of cardiac injury, and sildenafil did not abolish this effect. We conclude that long-term ADT with leuprolide increases abdominal adiposity and cardiac injury biomarker without cardiac contractile dysfunction. Sildenafil did not prevent ADT-associated adverse changes.


Assuntos
Cardiopatias , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Leuprolida/efeitos adversos , Citrato de Sildenafila/farmacologia , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Antagonistas de Androgênios/efeitos adversos , Androgênios , Adiposidade , Qualidade de Vida , Camundongos Endogâmicos C57BL , Cardiopatias/induzido quimicamente , Hormônio Liberador de Gonadotropina
13.
Mol Cell Biochem ; 478(3): 679-696, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36036333

RESUMO

Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.


Assuntos
COVID-19 , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Infarto do Miocárdio , Masculino , Camundongos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Tadalafila , Hidroxicloroquina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , COVID-19/complicações , Tratamento Farmacológico da COVID-19 , Citrato de Sildenafila , Dicloridrato de Vardenafila/uso terapêutico , Infarto do Miocárdio/metabolismo , Hiperglicemia/tratamento farmacológico
14.
Environ Sci Technol ; 57(41): 15412-15421, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787400

RESUMO

Ammonia (NH3) is a major air pollutant. However, few studies have been extended beyond the histopathological changes in the olfactory mucosa to the impact of NH3 exposure on other parts of the olfactory system and olfactory functioning. Therefore, we assessed the effects of exogenous NH3 (either 20 ppm for the low exposure group or 200 ppm for the high exposure group) on the various parts of the olfactory system by histological observation, gene expression, immunochemistry, and chemical analyses. A total of 140 Institute of Cancer Research mice (4 weeks old), 70 females and 70 males (average body weight at the start: 21.5 ± 1.9 g), were used. The exposure lasted for 4 weeks, and the mice were exposed to the NH3 for 4 h per day. Our results showed that chronic exposure to NH3 damaged the olfactory system, with consequences for changing the foraging behavior and anxiety behavior. Our results also suggest that it is plausible that NH3 recruited T cells and activated microglia cells and astrocytes, leading to inflammation in the olfactory system. Increased release of proinflammatory cytokines (TNF-α, IL-1ß, IL-6, and interferon-γ) and reduced release of anti-inflammatory cytokines (IL-4 and IFN-beta) led to tissue damage and compromised the functions of the olfactory system.


Assuntos
Poluentes Ambientais , Neoplasias , Masculino , Feminino , Camundongos , Animais , Amônia , Inflamação , Citocinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(38): 23782-23793, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907944

RESUMO

Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.


Assuntos
Infecções por Caliciviridae , Interações Hospedeiro-Patógeno/imunologia , Interferons , Intestinos , Norovirus , Sistemas CRISPR-Cas , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Humanos , Interferons/genética , Interferons/metabolismo , Intestinos/imunologia , Intestinos/virologia , Modelos Biológicos , Norovirus/genética , Norovirus/imunologia , Norovirus/patogenicidade , Organoides/imunologia , Organoides/virologia , Análise de Sequência de RNA , Transcriptoma/genética , Replicação Viral
16.
Proc Natl Acad Sci U S A ; 117(3): 1700-1710, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896578

RESUMO

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Intestinos/virologia , Norovirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Ceramidas/farmacologia , Ácido Glicoquenodesoxicólico , Humanos , Receptores Acoplados a Proteínas G , Esfingomielina Fosfodiesterase/metabolismo , Receptores de Esfingosina-1-Fosfato
17.
Artigo em Inglês | MEDLINE | ID: mdl-37971474

RESUMO

Background: Diabetic retinopathy (DR) substantially threatens ocular health, necessitating the accurate and prompt assessment of its onset and progression. Optical coherence tomography angiography (OCTA) is a valuable tool for evaluating periocular microvascular indicators, offering insights crucial for diagnosing and treating DR. Objective: This meta-analysis aims to evaluate the progression of diabetic retinopathy (DR) by examining periocular microvascular indicators using optical coherence tomography angiography (OCTA). The objective is to provide substantive evidence for the future diagnosis and treatment of DR. Methods: We analyzed the relevant research retrieved from PubMed and Web of Science until January 2023. The inclusion and exclusion criteria were carefully applied to select eligible studies. Quality assessment was performed using the Newcastle-Ottawa Scale, with studies scoring 4 or less excluded. Meta-analysis was conducted using Revman 5.3 software and focused on key indicators, including peripapillary vascular length density (pVLD) and peripapillary vascular density (pVD). Heterogeneity was assessed using I2 and P values, with effect sizes determined via fixed-effect or random-effects models based on heterogeneity levels. Results: Six studies involving 839 DR-afflicted eyes and 3209 non-DR eyes were included after screening. All selected articles exhibited high reference value, with quality scores ranging from 5 to 8 points. The meta-analysis demonstrated that DR patients displayed significantly lower pVD and pVLD in the superficial (SCP) and deep capillary plexus (DCP) compared to non-DR patients (P < .05). These findings remained consistent across different effect models, reaffirming their validity. Conclusions: Patients with DR exhibit reduced levels of pVD and pVLD in the SCP and DCP compared to non-DR individuals. OCTA examination of periocular microvascular indicators emerges as an effective tool for assessing the onset and progression of DR.

18.
Entropy (Basel) ; 25(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37238549

RESUMO

Affective understanding of language is an important research focus in artificial intelligence. The large-scale annotated datasets of Chinese textual affective structure (CTAS) are the foundation for subsequent higher-level analysis of documents. However, there are very few published datasets for CTAS. This paper introduces a new benchmark dataset for the task of CTAS to promote development in this research direction. Specifically, our benchmark is a CTAS dataset with the following advantages: (a) it is Weibo-based, which is the most popular Chinese social media platform used by the public to express their opinions; (b) it includes the most comprehensive affective structure labels at present; and (c) we propose a maximum entropy Markov model that incorporates neural network features and experimentally demonstrate that it outperforms the two baseline models.

19.
Angew Chem Int Ed Engl ; 62(44): e202310006, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702354

RESUMO

The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+ . The well-designed eutectic-based PAN1.2 -SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm-1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2 -SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm-2 , and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6 Co0.2 Mn0.2 O2 pouch cells employing PAN1.2 -SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.

20.
BMC Bioinformatics ; 23(1): 222, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676617

RESUMO

BACKGROUND: Computer-aided drug design provides an effective method of identifying lead compounds. However, success rates are significantly bottlenecked by the lack of accurate and reliable scoring functions needed to evaluate binding affinities of protein-ligand complexes. Therefore, many scoring functions based on machine learning or deep learning have been developed to improve prediction accuracies in recent years. In this work, we proposed a novel featurization method, generating a new scoring function model based on 3D convolutional neural network. RESULTS: This work showed the results from testing four architectures and three featurization methods, and outlined the development of a novel deep 3D convolutional neural network scoring function model. This model simplified feature engineering, and in combination with Grad-CAM made the intermediate layers of the neural network more interpretable. This model was evaluated and compared with other scoring functions on multiple independent datasets. The Pearson correlation coefficients between the predicted binding affinities by our model and the experimental data achieved 0.7928, 0.7946, 0.6758, and 0.6474 on CASF-2016 dataset, CASF-2013 dataset, CSAR_HiQ_NRC_set, and Astex_diverse_set, respectively. Overall, our model performed accurately and stably enough in the scoring power to predict the binding affinity of a protein-ligand complex. CONCLUSIONS: These results indicate our model is an excellent scoring function, and performs well in scoring power for accurately and stably predicting the protein-ligand affinity. Our model will contribute towards improving the success rate of virtual screening, thus will accelerate the development of potential drugs or novel biologically active lead compounds.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Aprendizado de Máquina , Ligação Proteica , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA