Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 198: 105727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225066

RESUMO

The citrus red mite, Panonychus citri (McGregor), is a globally important pest that has developed severe resistance to various pesticides. Lufenuron has been widely used in the control of the related pests in citrus orchard ecosystem. In this study, the susceptibilities of egg, larva, deutonymph and female adult of P. citri to lufenuron was determined, and the LC50 values were 161.354 mg/L, 49.595 mg/L, 81.580 mg/L, and 147.006 mg/L, respectively. Life-table analysis indicated that the fecundities were significantly increased by 11.86% and 26.84% after the mites were treated with LC20 concentrations of lufenuron at the egg or deutonymph stages, respectively. After eggs were treated with lufenuron, the immature stage and longevity were also affected, and resulted in a significant increase in r, R0 and λ. After exposure of female adults to LC20 of lufenuron, the fecundity and longevity of F0 generation significantly decreased by 31.99% and 10.94%, respectively. Furthermore, the expression level of EcR and Vg was significantly inhibited upon mites was treated with lufenuron. However, lufenuron exposure has a positive effect on fecundity and R0 in F1 generation, the expression of all reproduction-related genes was significantly up-regulated. In conclusion, there was a stimulating effect on the offspring population. Our results will contribute to the assessment of the resurgence of P. citri in the field after the application of lufenuron and the development of integrated pest control strategies in citrus orchards.


Assuntos
Benzamidas , Fluorocarbonos , Ácaros , Tetranychidae , Animais , Ecossistema , Reprodução
2.
Insect Sci ; 31(2): 354-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37641867

RESUMO

Panonychus citri McGregor (Acari: Tetranychidae), a destructive citrus pest, causes considerable annual economic losses due to its short lifespan and rapid resistance development. MicroRNA (miRNA)-induced RNA interference is a promising approach for pest control because of endogenous regulation of pest growth and development. To search for miRNAs with potential insecticidal activity in P. citri, genome-wide analysis of miRNAs at different developmental stages was conducted, resulting in the identification of 136 miRNAs, including 73 known and 63 novel miRNAs. A total of 17 isomiRNAs and 12 duplicated miRNAs were characterized. MiR-1 and miR-252-5p were identified as reference miRNAs for P. citri and Tetranychus urticae. Based on differential expression analysis, treatments with miR-let-7a and miR-315 mimics and the miR-let-7a antagomir significantly reduced the egg hatch rate and resulted in abnormal egg development. Overexpression or downregulation of miR-34-5p and miR-305-5p through feeding significantly decreased the adult eclosion rate and caused molting defects. The 4 miRNAs, miR-let-7a, miR-315, miR-34-5p, and miR-305-5p, had important regulatory functions and insecticidal properties in egg hatching and adult eclosion. In general, these data advance our understanding of miRNAs in mite biology, which can assist future studies on insect-specific miRNA-based green pest control technology.


Assuntos
Inseticidas , MicroRNAs , Ácaros , Tetranychidae , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Interferência de RNA
3.
Pest Manag Sci ; 79(9): 3250-3261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37071486

RESUMO

BACKGROUND: Panonychus citri is a globally dominant citrus plant pest mite. Pesticide-induced population resurgence is a concern for mite control. Exposure to sublethal concentrations of pesticides has stimulated reproduction and outbreak risks in many pests. Pyridaben, a mitochondrial electron transport inhibitor, has been frequently used worldwide in mite control. In the study, sublethal and transgenerational effects of pyridaben exposure on Pyr_Rs (resistant) and Pyr_Control (susceptible) strains were systematically investigated in both exposed parental generation (F0 ) and unexposed offspring generations (F1 and F2 ) by evaluating life-table and physiological parameters. RESULTS: After exposure to pyridaben, the fecundity of both strains was significantly reduced in F0 generation while significantly induced in F1 generation. Interestingly, these effects also stimulated the fecundity of the F2 generation in Pyr_Control strain while no significant effects occurred for Pyr_Rs strain. The intrinsic rate of increase (r) and finite rate of increase (λ) were significantly decreased only in F1 generation of Pyr_Control strain after exposure treatment. Meanwhile, the population projection indicated a smaller population size in F1 generation of Pyr_Control strain while a population increase for Pyr_Rs strain after sublethal treatment. Subsequent detoxification enzyme assays indicated that only P450 activities in F0 generation were significantly activated by LC30 exposure to pyridaben in both strains. Significant downregulation of reproduction-related (Pc_Vg) genes was observed in the F0 generations of both strains. Significant upregulation of P450 (CYP4CL2) and Pc_Vg of the F1 generation in both strains suggested the presence of delayed hormesis effects on the reproduction and developed tolerance to pyridaben, although the effects did not last over a longer period (F2 generation). CONCLUSION: These results provide evidence for transgenerational hormesis effects of low concentrations of pyridaben exposure that may lead to population increase and resurgence risks of resistant-mites in natural settings by stimulating reproduction. © 2023 Society of Chemical Industry.


Assuntos
Ácaros , Praguicidas , Tetranychidae , Animais , Reprodução , Tetranychidae/genética , Fertilidade , Praguicidas/farmacologia , Expressão Gênica
4.
J Agric Food Chem ; 71(49): 19465-19474, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048568

RESUMO

The citrus red mite Panonychus citri has developed strong resistance to acaricides. Cytochrome P450 monooxygenases (P450s) can detoxify pesticides and are involved in pesticide resistance in many insects. Here, a pyridaben-resistant P. citri strain showed cross-resistance to cyenopyrafen, bifenazate, fenpyroximate, and tolfenpyrad. Piperonyl butoxide, a P450 inhibitor, significantly increased the toxicity of pyridaben to resistant (Pyr_Rs) and susceptible (Pyr_Control) P. citri strains. P450 activity was significantly higher in Pyr_Rs than in Pyr_Control. Analyses of RNA-Seq data identified a P450 gene (CYP4CL2) that is potentially involved in pyridaben resistance. Consistently, it was up-regulated in two field-derived resistant populations (CQ_WZ and CQ_TN). RNA interference-mediated knockdown of CYP4CL2 significantly decreased the pyridaben resistance in P. citri. Transgenic Drosophila melanogaster expressing CYP4CL2 showed increased pyridaben resistance. Molecular docking analysis showed that pyridaben could bind to several amino acids at substrate recognition sites in CYP4CL2. These findings shed light on P450-mediated pyridaben resistance in pest mites.


Assuntos
Acaricidas , Citrus , Ácaros , Tetranychidae , Animais , Citrus/metabolismo , Drosophila melanogaster/metabolismo , Simulação de Acoplamento Molecular , Tetranychidae/genética , Tetranychidae/metabolismo , Acaricidas/farmacologia , Acaricidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
5.
Pest Manag Sci ; 79(3): 996-1004, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36318043

RESUMO

BACKGROUND: Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS: Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION: The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.


Assuntos
Acaricidas , Piridazinas , Tetranychidae , Animais , Acaricidas/farmacologia , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA