Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(11): e22615, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36273308

RESUMO

Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.


Assuntos
Schistosoma japonicum , Camundongos , Animais , Schistosoma japonicum/genética , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas , Anti-Inflamatórios/metabolismo , Imunidade
2.
Microbiome ; 11(1): 267, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017581

RESUMO

BACKGROUND: Studies on the gut microbiota of animals have largely focused on vertebrates. The transmission modes of commensal intestinal bacteria in mammals have been well studied. However, in gastropods, the relationship between gut microbiota and hosts is still poorly understood. To gain a better understanding of the composition of gut microbes and their transmission routes in gastropods, a large-scale and long-term experiment on the dynamics and transmission modes of gut microbiota was conducted on freshwater snails. RESULTS: We analyzed 244 microbial samples from the digestive tracts of freshwater gastropods and identified Proteobacteria and Bacteroidetes as dominant gut microbes. Aeromonas, Cloacibacterium, and Cetobacterium were identified as core microbes in the guts, accounting for over 50% of the total sequences. Furthermore, both core bacteria Aeromonas and Cloacibacterium, were shared among 7 gastropod species and played an important role in determining the gut microbial community types of both wild and cultured gastropods. Analysis of the gut microbiota at the population level, including wild gastropods and their offspring, indicated that a proportion of gut microbes could be consistently vertically transmitted inheritance, while the majority of the gut microbes resulted from horizontal transmission. Comparing cultured snails to their wild counterparts, we observed an increasing trend in the proportion of shared microbes and a decreasing trend in the number of unique microbes among wild gastropods and their offspring reared in a cultured environment. Core gut microbes, Aeromonas and Cloacibacterium, remained persistent and dispersed from wild snails to their offspring across multiple generations. Interestingly, under cultured environments, the gut microbiota in wild gastropods could only be maintained for up to 2 generations before converging with that of cultured snails. The difference observed in gut bacterial metabolism functions was associated with this transition. Our study also demonstrated that the gut microbial compositions in gastropods are influenced by developmental stages and revealed the presence of Aeromonas and Cloacibacterium throughout the life cycle in gastropods. Based on the dynamics of core gut microbes, it may be possible to predict the health status of gastropods during their adaptation to new environments. Additionally, gut microbial metabolic functions were found to be associated with the adaptive evolution of gastropods from wild to cultured environments. CONCLUSIONS: Our findings provide novel insights into the dynamic processes of gut microbiota colonization in gastropod mollusks and unveil the modes of microbial transmission within their guts. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Gastrópodes , Microbiota , Animais , Humanos , Microbioma Gastrointestinal/genética , Bactérias , Bacteroidetes/genética , Mamíferos
3.
Cell Discov ; 9(1): 101, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794085

RESUMO

Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.

4.
Front Immunol ; 13: 791006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185886

RESUMO

Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.


Assuntos
Comunicação Celular , Sistema Imunitário/metabolismo , Trogocitose , Animais , Apresentação de Antígeno/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Complexo Principal de Histocompatibilidade , Linfócitos T/metabolismo
5.
Microbiol Spectr ; 10(2): e0184321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254167

RESUMO

Biomphalaria glabrata transmits schistosomiasis mansoni which poses considerable risks to hundreds of thousands of people worldwide, and is widely used as a model organism for studies on the snail-schistosome relationship. Gut microbiota plays important roles in multiple aspects of host including development, metabolism, immunity, and even behavior; however, detailed information on the complete diversity and functional profiles of B. glabrata gut microbiota is still limited. This study is the first to reveal the gut microbiome of B. glabrata based on metagenome-assembled genome (MAG). A total of 28 gut samples spanning diet and age were sequenced and 84 individual microbial genomes with ≥ 70% completeness and ≤ 5% contamination were constructed. Bacteroidota and Proteobacteria were the dominant bacteria in the freshwater snail, unlike terrestrial organisms harboring many species of Firmicutes and Bacteroidota. The microbial consortia in B. glabrata helped in the digestion of complex polysaccharide such as starch, hemicellulose, and chitin for energy supply, and protected the snail from food poisoning and nitrate toxicity. Both microbial community and metabolism of B. glabrata were significantly altered by diet. The polysaccharide-degrading bacterium Chryseobacterium was enriched in the gut of snails fed with high-digestibility protein and high polysaccharide diet (HPHP). Notably, B. glabrata as a mobile repository can escalate biosafety issues regarding transmission of various pathogens such as Acinetobacter nosocomialis and Vibrio parahaemolyticus as well as multiple antibiotic resistance genes in the environment and to other organisms. IMPORTANCE The spread of aquatic gastropod Biomphalaria glabrata, an intermediate host of Schistosoma mansoni, exacerbates the burden of schistosomiasis disease worldwide. This study provides insights into the importance of microbiome for basic biological activities of freshwater snails, and offers a valuable microbial genome resource to fill the gap in the analysis of the snail-microbiota-parasite relationship. The results of this study clarified the reasons for the high adaptability of B. glabrata to diverse environments, and further illustrated the role of B. glabrata in accumulation of antibiotic resistance in the environment and spread of various pathogens. These findings have important implications for further exploration of the control of snail dissemination and schistosomiasis from a microbial perspective.


Assuntos
Biomphalaria , Esquistossomose , Animais , Biomphalaria/genética , Biomphalaria/parasitologia , Carboidratos , Interações Hospedeiro-Parasita/genética , Humanos , Metagenoma , Nitrogênio
6.
Front Cell Infect Microbiol ; 11: 744352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621694

RESUMO

Background: Schistosomiasis is one of the most important tropical parasitic diseases worldwide. Biomphalaria straminea, the intermediate host of Schistosoma mansoni, has invaded and spread to Southern China since 1974 and may pose enormous threats to public health. Controlling intermediate host snails is an effective strategy in schistosomiasis intervention. However, the only effective chemical molluscicide, niclosamide, currently recommended by WHO may cause environmental pollution, loss of biodiversity, and high costs. Thus, to counter intermediate hosts, a sustainable and environmentally friendly tool is urgently needed. Here, we conducted field investigations to collect and identify a potential snail competitor rotifer and evaluated its molluscicide effect. Results: In this study, we collected two samples of rotifers from Shenzhen. We found both red and black phenotypic B. straminea snails at the sampling sites. We identified the rotifer population as a species of the genus Philodina according to the amplification and phylogenetic analysis results of coxI gene. We found that rotifer exposure did not significantly affect the hatching rate of B. straminea eggs but promoted the killing of juvenile snails. Meanwhile, rotifer exposure did not significantly alter the fecundity of B. straminea quantified by the number of eggs per egg mass, the number of egg masses per snail, and the number of eggs per snail; but the snails exposed to rotifers showed lower fecundity performance than the control snails. Importantly, rotifer exposure could significantly affect the development of juvenile B. straminea, showing a smaller shell diameter of the exposed snails than that of the control snails. In addition, rotifer exposure affected the life span of B. straminea snails, showing a 16.61% decline in the average life span. After rotifer exposure, the S. mansoni-infected B. straminea snails died significantly faster than those without rotifer exposure. Similar findings were observed in S. mansoni-infected Biomphalaria glabrata snails. These results implied that rotifer exposure significantly promoted the mortality of S. mansoni-infected B. straminea and B. glabrata. Conclusions: Our study demonstrated the potential molluscicide effect of rotifers on intermediate hosts under laboratory conditions. Our findings may provide new insights into the development of biocontrol strategies for snail-borne disease transmission.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , China , Filogenia , Schistosoma mansoni/genética
7.
Front Cell Dev Biol ; 9: 766205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869360

RESUMO

Parasitic infection can induce pathological injuries and impact the gut microbiota diversity and composition of the host. Bacillus subtilis is a nonpathogenic and noninvasive probiotic bacterium for humans and other animals, playing an important role in improving the host immune system's ability to respond to intestinal and liver diseases and modulating gut microbiota. However, whether B. subtilis can impact biological functions in Schistosoma japonicum-infected mice is unclear. This study used oral administration (OA) of B. subtilis to treat mice infected with S. japonicum. We evaluated changes in the gut microbiota of infected mice using 16 S rRNA gene sequencing and differentially expressed gene profiles using transcriptome sequencing after OA B. subtilis. We found that OA B. subtilis significantly attenuated hepatic and intestinal pathological injuries in infected mice. The gut microbiota of mice were significantly altered after S. japonicum infection, while OA B. subtilis remodel the diversity and composition of gut microbiomes of infected mice. We found that the S. japonicum-infected mice with OA B. subtilis had an overabundance of the most prevalent bacterial genera, including Bacteroides, Enterococcus, Lactobacillus, Blautia, Lachnoclostridium, Ruminiclostridium, and Enterobacter. Transcriptomic analysis of intestinal tissues revealed that OA B. subtilis shaped the intestinal microenvironment of the host responding to S. japonicum infection. Differentially expressed genes were classified into KEGG pathways between S. japonicum-infected mice and those without included cell adhesion molecules, intestinal immune network for IgA production, hematopoietic cell lineage, Fc epsilon RI signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, calcium signaling pathway, Fc gamma R-mediated phagocytosis, chemokine signaling pathway, phospholipase D signaling pathway, NF-kappa B signaling pathway, B cell receptor signaling pathway, pancreatic secretion, and phagosome. In conclusion, our findings showed that OA B. subtilis alleviates pathological injuries and regulates gene expression, implying that B. subtilis supplementation may be a potential therapeutic strategy for schistosomiasis. Our study may highlight the value of probiotics as a beneficial supplementary therapy during human schistosomiasis, but further studies are needed.

8.
Front Microbiol ; 11: 2092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013763

RESUMO

Human schistosomiasis, which is caused by schistosomes, is a zoonosis that is difficult to control because of the many reservoir hosts. However, Microtus fortis is the only mammal that is naturally resistant to Schistosoma japonicum infection known in China, in which S. japonicum growth and development were arrested on day 12, and the worms eliminated on day 20 post-infection. In this review, we present an overview of the established and purported mechanisms of resistance to S. japonicum infection in M. fortis in comparison to Rattus norvegicus, a semi-permissive host. Clarifying the mechanism of this efficient resistance can help us to better understand host-parasite interaction and to provide better methods to control schistosomiasis.

9.
PLoS Negl Trop Dis ; 14(6): e0008310, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511225

RESUMO

Schistosomes infect more than 200 million people worldwide, and globally, over 700 million people are at risk of infection. The snail Biomphalaria straminea, as one of the intermediate hosts of Schistosoma mansoni, consecutively invaded Hong Kong in 1973, raising great concern in China. In this study, a malacological survey was conducted over a period of four years, and investigations were performed on the mechanism of susceptibility of B. straminea to S. mansoni. B. straminea was investigated in China from 2014 to 2018. Out of 185 investigated sites, 61 were positive for stages of black B. straminea (BBS), which shows pigmented spots. Twenty of the 61 sites were positive for red B. straminea (RBS), which is partially albino and red colored. Phylogenetic analyses based on cox1 and 18S rRNA sequences demonstrated that both phenotypes were clustered with Brazilian strains. No S. mansoni infections were detected in field-collected snail. However, in laboratory experiments, 4.17% of RBS were susceptible to a Puerto Rican strain of S. mansoni, while BBS was not susceptible. The highest susceptibility rate (70.83%) was observed in the F2 generation of RBS in lab. The density of RBS has increased from south to north and from west to east in Guangdong since 2014. Five tyrosinase tyrosine metabolism genes were upregulated in BBS. Transcriptome comparisons of RBS and BBS showed that ficolin, C1q, MASP-like, and membrane attack complex (MAC)/perforin models of the complement system were significantly upregulated in BBS. Our study demonstrated that B. straminea is widely distributed in Hong Kong and Guangdong Province, which is expanding northwards very rapidly as a consequence of its adaptation to local environments. Our results suggest that B. straminea from South China is susceptible to S. mansoni, implying the high potential for S. mansoni transmission and increased S. mansoni infection risk in China.


Assuntos
Biomphalaria/parasitologia , Água Doce/parasitologia , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/transmissão , Animais , China/epidemiologia , Vetores de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Esquistossomose mansoni/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA