Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(7): e2305336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797180

RESUMO

Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3ß) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.


Assuntos
Consolidação da Fratura , Sistemas de Liberação de Fármacos por Nanopartículas , Consolidação da Fratura/fisiologia , Macrófagos/metabolismo , Osso e Ossos , Peptídeos/metabolismo
2.
Nanomedicine ; 56: 102727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056586

RESUMO

Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.


Assuntos
Consolidação da Fratura , Nanopartículas , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Macrófagos , Nanopartículas/química
3.
Adv Funct Mater ; 29(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34335131

RESUMO

The principle cause of cardiovascular disease (CVD) is atherosclerosis, a chronic inflammatory condition characterized by immunologically complex fatty lesions within the intima of arterial vessel walls. Dendritic cells (DCs) are key regulators of atherosclerotic inflammation, with mature DCs generating pro-inflammatory signals within vascular lesions and tolerogenic DCs eliciting atheroprotective cytokine profiles and regulatory T cell (Treg) activation. Here, we engineered the surface chemistry and morphology of synthetic nanocarriers composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers to selectively target and modulate DCs by transporting the anti-inflammatory agent 1, 25-Dihydroxyvitamin D3 (aVD) and ApoB-100 derived antigenic peptide P210. Polymersomes decorated with an optimized surface display and density for a lipid construct of the P-D2 peptide, which binds CD11c on the DC surface, significantly enhanced the cytosolic delivery and resulting immunomodulatory capacity of aVD in vitro. Intravenous administration of the optimized polymersomes achieved selective targeting of DCs in atheroma and spleen compared to all other cell populations, including both immune and CD45- cells, and locally increased the presence of tolerogenic DCs and cytokines. aVD-loaded polymersomes significantly inhibited atherosclerotic lesion development in high fat diet-fed ApoE-/- mice following 8 weeks of administration. Incorporation of the P210 peptide generated the largest reductions in vascular lesion area (~33%, p<0.001), macrophage content (~55%, p<0.001), and vascular stiffness (4.8-fold). These results correlated with an ~6.5-fold increase in levels of Foxp3+ regulatory T cells within atherosclerotic lesions. Our results validate the key role of DC immunomodulation during aVD-dependent inhibition of atherosclerosis and demonstrate the therapeutic enhancement and dosage lowering capability of cell-targeted nanotherapy in the treatment of CVD.

4.
ACS Biomater Sci Eng ; 10(4): 2224-2234, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38537162

RESUMO

Designing targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity. Therefore, this work investigated the effect of target ligand density, the treatment window after injury, specificity of TRAP binding peptide (TBP), the extent of TRAP deposition, and underlying genetic factors (e.g., mouse strain differences) on TBP-NP targeting. Data based on in vitro binding studies and in vivo biodistribution analyses using a murine femoral fracture model suggest that TBP-NP-TRAP interactions and TBP-NP bone accumulation were ligand-density-dependent; in vitro, TRAP affinity was correlated with ligand density up to the maximum of 200,000 TBP ligands/NP, while NPs with 80,000 TBP ligands showed 2-fold increase in fracture accumulation at day 21 post injury compared with that of untargeted or scrambled controls. While fracture accumulation exhibited similar trends when injected at day 3 compared to that at day 21 postfracture, there were no significant differences observed between TBP-functionalized and control NPs, possibly due to saturation of TRAP by NPs at day 3. Leveraging a calcium-depletion diet, TRAP deposition and TBP-NP bone accumulation were positively correlated, confirming that TRAP-TBP binding leads to TBP-NP bone accumulation in vivo. Furthermore, TBP-NP exhibited similar bone accumulation in both C57BL/6 and BALB/c mouse strains versus control NPs, suggesting the broad applicability of TBP-NP regardless of the underlying genetic differences. These studies provide insight into TBP-NP design, mechanism, and therapeutic windows, which inform NP design and treatment strategies for fractures and other bone-associated diseases that leverage TRAP, such as marrow-related hematologic diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Camundongos , Distribuição Tecidual , Ligantes , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/farmacologia
5.
Sci Adv ; 10(25): eadn2332, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896625

RESUMO

Satisfactory healing following acute tendon injury is marred by fibrosis. Despite the high frequency of tendon injuries and poor outcomes, there are no pharmacological therapies in use to enhance the healing process. Moreover, systemic treatments demonstrate poor tendon homing, limiting the beneficial effects of potential tendon therapeutics. To address this unmet need, we leveraged our existing tendon healing spatial transcriptomics dataset and identified an area enriched for expression of Acp5 (TRAP) and subsequently demonstrated robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this DDS, we delivered niclosamide (NEN), an S100a4 inhibitor. While systemic delivery of free NEN did not alter healing, TBP-NPNEN enhanced both functional and mechanical recovery, demonstrating the translational potential of this approach to enhance the tendon healing process.


Assuntos
Traumatismos dos Tendões , Tendões , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Traumatismos dos Tendões/tratamento farmacológico , Tendões/efeitos dos fármacos , Tendões/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Modelos Animais de Doenças , Proteínas de Ligação ao Cálcio/metabolismo , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-36916683

RESUMO

Macrophages, the major component of the mononuclear phagocyte system, uptake and clear systemically administered nanoparticles (NPs). Therefore, leveraging macrophages as a druggable target may be advantageous to enhance NP-mediated drug delivery. Despite many studies focused on NP-cell interactions, NP-mediated macrophage polarization mechanisms are still poorly understood. This work aimed to explore the effect of NP physicochemical parameters (size and charge) on macrophage polarization. Upon exposure to biological fluids, proteins rapidly adsorb to NPs and form protein coronas. To this end, we hypothesized that NP protein coronas govern NP-macrophage interactions, uptake, and subsequent macrophage polarization. To test this hypothesis, model polystyrene NPs with various charges and sizes, as well as NPs relevant to drug delivery, were utilized. Data suggest that cationic NPs potentiate both M1 and M2 macrophage markers, while anionic NPs promote M1-to-M2 polarization. Additionally, anionic polystyrene nanoparticles (APNs) of 50 nm exhibit the greatest influence on M2 polarization. Proteomics was pursued to further understand the effect of NPs physicochemical parameters on protein corona, which revealed unique protein patterns based on NP charge and size. Several proteins impacting M1 and M2 macrophage polarization were identified within cationic polystyrene nanoparticles (CPNs) corona, while APNs corona included fewer M1 but more M2-promoting proteins. Nevertheless, size impacts protein corona abundance but not identities. Altogether, protein corona identities varied based on NP surface charge and correlated to dramatic differences in macrophage polarization. In contrast, NP size differentially impacts macrophage polarization, which is dominated by NP uptake level rather than protein corona. In this work, specific corona proteins were identified as a function of NP physicochemical properties. These proteins are correlated to specific macrophage polarization programs and may provide design principles for developing macrophage-mediated NP drug delivery systems.

7.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076889

RESUMO

Tendon regeneration following acute injury is marred by a fibrotic healing response that prevents complete functional recovery. Despite the high frequency of tendon injuries and the poor outcomes, including functional deficits and elevated risk of re-injury, there are currently no pharmacological therapies in clinical use to enhance the healing process. Several promising pharmacotherapies have been identified; however, systemic treatments lack tendon specificity, resulting in poor tendon biodistribution and perhaps explaining the largely limited beneficial effects of these treatments on the tendon healing process. To address this major unmet need, we leveraged our existing spatial transcriptomics dataset of the tendon healing process to identify an area of the healing tendon that is enriched for expression of Acp5. Acp5 encodes tartrate-resistant acid phosphatase (TRAP), and we demonstrate robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this drug delivery system, we delivered the S100a4 inhibitor, Niclosamide to the healing tendon. We have previously shown that genetic knockdown of S100a4 enhances tendon healing. While systemic delivery of Niclosamide did not affect the healing process, relative to controls, TBP-NP delivery of Niclosamide enhanced both functional and mechanical outcome measures. Collectively, these data identify a novel tendon-targeting drug delivery system and demonstrate the translational potential of this approach to enhance the tendon healing process.

8.
J Biomed Mater Res A ; 110(1): 229-238, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319645

RESUMO

Despite efforts to achieve tissue selectivity, the majority of systemically administered drug delivery systems (DDSs) are cleared by the mononuclear phagocyte system (MPS) before reaching target tissues regardless of disease or injury pathology. Previously, we showed that while tartrate-resistant acid phosphatase (TRAP) binding peptide (TBP)-targeted polymeric nanoparticles (TBP-NP) delivering a bone regenerative Wnt agonist improved NP fracture accumulation and expedited healing compared with controls, there was also significant MPS accumulation. Here we show that TBP-NPs are taken up by liver, spleen, lung, and bone marrow macrophages (Mϕ), with 76 ± 4%, 49 ± 11%, 27 ± 9%, and 92 ± 5% of tissue-specific Mϕ positive for NP, respectively. Clodronate liposomes (CLO) significantly depleted liver and spleen Mϕ, resulting in 1.8-fold and 3-fold lower liver and spleen and 1.3-fold and 1.6-fold greater fracture and naïve femur accumulation of TBP-NP. Interestingly, depletion and saturation of MPS using 10-fold greater TBP-NP doses also resulted in significantly higher TBP-NP accumulation at lungs and kidneys, potentially through compensatory clearance mechanisms. The higher NP dose resulted in greater TBP-NP accumulation at naïve bone tissue; however, other MPS tissues (i.e., heart and lungs) exhibited greater TBP-NP accumulation, suggesting uptake by other cell types. Most importantly, neither Mϕ depletion nor saturation strategies improved fracture site selectivity of TBP-NPs, possibly due to a reduction of Mϕ-derived osteoclasts, which deposit the TRAP epitope. Altogether, these data support that MPS-mediated clearance is a key obstacle in robust and selective fracture accumulation for systemically administered bone-targeted DDS and motivates the development of more sophisticated approaches to further improve fracture selectivity of DDS.


Assuntos
Nanopartículas , Osso e Ossos , Sistemas de Liberação de Medicamentos , Lipossomos , Macrófagos/metabolismo
9.
J Oral Microbiol ; 14(1): 1997230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34868474

RESUMO

BACKGROUND: Dental caries is a multifactorial disease caused by pathogenic biofilm. In particular, Streptococcus mutans synthesizes biofilm exopolysaccharides, while Candida albicans is associated with the development of severe carious lesions. AIM: This study aimed to prevent the formation of S. mutans and C. albicans biofilms by exploiting pH-sensitive nanoparticle carriers (NPCs) with high affinity to exopolysaccharides to increase the substantivity of multi-targeted antibiofilm drugs introduced topically in vitro. METHODS: Dual-species biofilms were grown on saliva-coated hydroxyapatite discs with sucrose. Twice-daily, 1.5 min topical treatment regimens of unloaded and drug-loaded NPC were used. Drugs included combinations of two or three compounds with distinct, complementary antibiofilm targets: tt-farnesol (terpenoid; bacterial acid tolerance, fungal quorum sensing), myricetin (flavonoid; exopolysaccharides inhibitor), and 1771 (lipoteichoic acid inhibitor; bacterial adhesion and co-aggregation). Biofilms were evaluated for biomass, microbial population, and architecture. RESULTS: NPC delivering tt-farnesol and 1771 with or without myricetin completely prevented biofilm formation by impeding biomass accumulation, bacterial and fungal population growth, and exopolysaccharide matrix deposition (vs. control unloaded NPC). Both formulations hindered acid production, maintaining the pH of spent media above the threshold for enamel demineralization. However, treatments had no effect on pre-established dual-species biofilms. CONCLUSION: Complementary antibiofilm drug-NPC treatments prevented biofilm formation by targeting critical virulence factors of acidogenicity and exopolysaccharides synthesis.

10.
ACS Nano ; 12(2): 1023-1032, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406741

RESUMO

The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu2+, resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.


Assuntos
Cobre/química , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Fólico/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Ácido Fólico/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA