Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.107
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101408

RESUMO

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Assuntos
Arrestina , Receptor CB1 de Canabinoide , Transdução de Sinais , Arrestina/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Microscopia Crioeletrônica , Receptor CB1 de Canabinoide/metabolismo , Humanos , Animais , Linhagem Celular
2.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
3.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033361

RESUMO

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Adulto , Alelos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
4.
Nature ; 626(7999): 523-528, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356068

RESUMO

Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.

5.
Nature ; 611(7934): 68-73, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289343

RESUMO

Objects that deform a liquid interface are subject to capillary forces, which can be harnessed to assemble the objects1-4. Once assembled, such structures are generally static. Here we dynamically modulate these forces to move objects in programmable two-dimensional patterns. We 3D-print devices containing channels that trap floating objects using repulsive capillary forces5,6, then move these devices vertically in a water bath. Because the channel cross-sections vary with height, the trapped objects can be steered in two dimensions. The device and interface therefore constitute a simple machine that converts vertical to lateral motion. We design machines that translate, rotate and separate multiple floating objects and that do work on submerged objects through cyclic vertical motion. We combine these elementary machines to make centimetre-scale compound machines that braid micrometre-scale filaments into prescribed topologies, including non-repeating braids. Capillary machines are distinct from mechanical, optical or fluidic micromanipulators in that a meniscus links the object to the machine. Therefore, the channel shapes need only be controlled on the scale of the capillary length (a few millimetres), even when the objects are microscopic. Consequently, such machines can be built quickly and inexpensively. This approach could be used to manipulate micrometre-scale particles or to braid microwires for high-frequency electronics.

6.
Nature ; 607(7918): 321-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676479

RESUMO

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Assuntos
Afeto , Destreza Motora , Vias Neurais , Doença de Parkinson , Tálamo , Animais , Modelos Animais de Doenças , Aprendizagem , Locomoção , Potenciação de Longa Duração , Camundongos , Neurônios/fisiologia , Núcleo Accumbens , Optogenética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalâmico , Sinapses , Tálamo/citologia , Tálamo/patologia
7.
Nature ; 591(7850): 413-419, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33618348

RESUMO

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , China , Produção Agrícola/história , Feminino , Haplótipos/genética , História Antiga , Humanos , Japão , Idioma/história , Masculino , Mongólia , Nepal , Oryza , Polimorfismo de Nucleotídeo Único/genética , Sibéria , Taiwan
8.
Nature ; 583(7815): 282-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32218527

RESUMO

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Betacoronavirus/química , Betacoronavirus/classificação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genômica , Humanos , Malásia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/virologia
9.
Proc Natl Acad Sci U S A ; 120(13): e2210796120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947513

RESUMO

Rewiring of redox metabolism has a profound impact on tumor development, but how the cellular heterogeneity of redox balance affects leukemogenesis remains unknown. To precisely characterize the dynamic change in redox metabolism in vivo, we developed a bright genetically encoded biosensor for H2O2 (named HyPerion) and tracked the redox state of leukemic cells in situ in a transgenic sensor mouse. A H2O2-low (HyPerion-low) subset of acute myeloid leukemia (AML) cells was enriched with leukemia-initiating cells, which were endowed with high colony-forming ability, potent drug resistance, endosteal rather than vascular localization, and short survival. Significantly high expression of malic enzymes, including ME1/3, accounted for nicotinamide adenine dinucleotide phosphate (NADPH) production and the subsequent low abundance of H2O2. Deletion of malic enzymes decreased the population size of leukemia-initiating cells and impaired their leukemogenic capacity and drug resistance. In summary, by establishing an in vivo redox monitoring tool at single-cell resolution, this work reveals a critical role of redox metabolism in leukemogenesis and a potential therapeutic target.


Assuntos
Peróxido de Hidrogênio , Leucemia Mieloide Aguda , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oxirredução , Camundongos Transgênicos , Resistencia a Medicamentos Antineoplásicos/genética
10.
Plant J ; 118(1): 24-41, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102874

RESUMO

Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.


Assuntos
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
11.
Hepatology ; 79(2): 392-408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37409771

RESUMO

BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.


Assuntos
Inflamassomos , Receptores da Bombesina , Humanos , Camundongos , Animais , Receptores da Bombesina/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 1/metabolismo , Leucócitos Mononucleares , Peptídeo Liberador de Gastrina/metabolismo , Etanol , Fígado/metabolismo , Citocinas/metabolismo , Fator Regulador 1 de Interferon/metabolismo
12.
Cell Mol Life Sci ; 81(1): 57, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279052

RESUMO

The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.


Assuntos
Complexo de Sinalização da Axina , beta Catenina , Humanos , Complexo de Sinalização da Axina/genética , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Separação de Fases , Mutação/genética , Via de Sinalização Wnt/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo
13.
J Am Chem Soc ; 146(20): 14349-14356, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742424

RESUMO

High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.

14.
J Am Chem Soc ; 146(1): 1144-1152, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164902

RESUMO

It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.

15.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38625041

RESUMO

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

16.
J Am Chem Soc ; 146(26): 17866-17877, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916547

RESUMO

Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.

17.
Eur J Immunol ; 53(1): e2250011, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250416

RESUMO

Gasdermin D (GSDMD) is a classical molecule involved in pyroptosis. It has been reported to be cleaved into N-terminal fragments to form pores in the neutrophil membrane and promote the release of neutrophil extracellular traps (NETs). However, it remains unclear if GSDMD is involved in neutrophil regulation and NET release during ARDS. The role of neutrophil GSDMD in the development of ARDS was investigated in a murine model of ARDS induced by lipopolysaccharide (LPS) using the neutrophil specific GSDMD-deficient mice. The neutrophil GSDMD cleavage and its relationship with NETosis were also explored in ARDS patients. The cleavage of GSDMD in neutrophils from ARDS patients and mice was upregulated. Inhibition of GSDMD by genetic knockout or inhibitors resulted in reduced production of NET both in vivo and in vitro, and attenuation of LPS-induced lung injury. Moreover, in vitro experiments showed that the inhibition of GSDMD attenuated endothelial injury co-cultured with neutrophils from ARDS patients, while extrinsic NETs reversed the protective effect of GSDMD inhibition. Collectively, our data suggest that the neutrophil GSDMD cleavage is crucial in NET release during ARDS. The NET release maintained by cleaved GSDMD in neutrophils may be a key event in the development of ARDS.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos , Neutrófilos , Piroptose
18.
Small ; : e2400477, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402438

RESUMO

Utilizing the ionic flux to generate voltage output has been confirmed as an effective way to meet the requirements of clean energy sources. Different from ionic thermoelectric (i-TE) and hydrovoltaic devices, a new hydrothermal chemical generator is designed by amorphous FeCl3 particles dispersing in MWCNT and unique ferric chloride or water gate. In the presence of gate, the special ion behaviors enable the cell to present a constant voltage of 0.60 V lasting for over 96 h without temperature difference. Combining the differences of cation concentration, humidity and temperature between the right and left side of sample, the maximum short-circuit current and power output can be obtained to 168.46 µA and 28.11 µW, respectively. The generator also can utilize the low-grade heat to produce electricity wherein Seebeck coefficient is 6.79 mV K-1 . The emerged hydrothermal chemical generator offers a novel approach to utilize the low-grade heat, water and salt solution resources, which provides a simple, sustainable and low-cost strategy to realize energy supply.

19.
Small ; 20(3): e2305711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697703

RESUMO

The typical chalcopyrite AgGaQ2 (Q = S, Se) are commercial infrared (IR) second-order nonlinear optical (NLO) materials; however, they suffer from unexpected laser-induced damage thresholds (LIDTs) primairy due to their narrow band gaps. Herein, what sets this apart from previously reported chemical substitutions is the utilization of an unusual cationic substitution strategy, represented by [[SZn4 ]S12 + [S4 Zn13 ]S24 + 11ZnS4 ⇒ MS12 + [M4 Cl]S24 + 11GaS4 ], in which the covalent Sx Zny units in the diamond-like sphalerite ZnS are synergistically replaced by cationic Mx Cly units, resulting in two novel salt-inclusion sulfides, M[M4 Cl][Ga11 S20 ] (M = A/Ba, A = K, 1; Rb, 2). As expected, the introduction of mixed cations in the GaS4 anionic frameworks of 1 and 2 leads to wide band gaps (3.04 and 3.01 eV), which exceeds the value of AgGaS2 , facilitating the improvement of high LIDTs (9.4 and 10.3 × AgGaS2 @1.06 µm, respectively). Furthermore, compounds 1 and 2 exhibit moderate second-harmonic generation intensities (0.84 and 0.78 × AgGaS2 @2.9 µm, respectively), mainly originating from the orderly packing tetrahedral GaS4 units. Importantly, this study demonstrates the successful application of the cationic substitution strategy based on diamond-like structures to provide a feasible chemical design insight for constructing high-performance NLO materials.

20.
Small ; 20(8): e2305765, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821399

RESUMO

Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2  S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA