Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(32): 17090-17097, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39099469

RESUMO

Unwanted icing on exposed surfaces poses significant risks, driving the quest for effective anti-icing mechanisms. While fracture mechanics concepts have been developed for designing coatings that weaken the ice-solid interface on soft surfaces, the factors that dictate ice adhesion strength and its counterpart, ice removal force, on hard surfaces remain poorly understood. In this study, we employ molecular dynamics simulations to investigate the interface rupture between ice and a hard solid substrate. The results indicate that the ice adhesion strength is contingent on the length of the ice cube. By examining the shearing behavior, we reveal a nanoscale critical force-bearing length. The shear force required to detach the ice scales proportionally with the length of the ice cube when it is smaller than the critical length. Once the ice cube length exceeds the critical length, the shear force stabilizes at a constant maximum value, revealing the existence of a maximum ice-removal force. The results align with the so-called strength versus toughness-controlled deicing regimes and are in agreement with cohesive zone modeling at the continuum length scale and recent experimental results. Our results extend this understanding to the nanoscale, confirming consistency between macro and micro scales. This consistency suggests that the toughness of the ice-solid interface is intrinsically governed by ice-surface interactions. By unraveling key intrinsic factors and their scale-dependent effects on the interface rupture of ice on surfaces, this study lays a solid theoretical foundation for the design and fabrication of next-generation anti-icing surfaces.

2.
Langmuir ; 38(10): 3129-3138, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238580

RESUMO

Microemulsions have been attracting great attention for their importance in various fields, including nanomaterial fabrication, food industry, drug delivery, and enhanced oil recovery. Atomistic insights into the self-microemulsifying process and the underlying mechanisms are crucial for the design and tuning of the size of microemulsion droplets toward applications. In this work, coarse-grained models were used to investigate the role that droplet sizes played in the preliminary self-microemulsifying process. Time evolution of liquid mixtures consisting of several hundreds of water/surfactant/oil droplets was resolved in large-scale simulations. By monitoring the size variation of the microemulsion droplets in the self-microemulsifying process, the dynamics of diameter distribution of water/surfactant/oil droplets were studied. The underlying mass transport mechanisms responsible for droplet size evolution and stability were elucidated. Specifically, temperature effects on the droplet size were clarified. This work provides the knowledge of the self-microemulsification of water-in-oil microemulsions at the nanoscale. The results are expected to serve as guidelines for practical strategies for preparing a microemulsion system with desirable droplet sizes and properties.


Assuntos
Tensoativos , Água , Emulsões
3.
Langmuir ; 37(47): 13873-13881, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34784476

RESUMO

Natural gas hydrate is a promising future energy source, but it also poses a huge threat to oil and gas production due to its ability to deposit within and block pipelines. Understanding the atomistic mechanisms of adhesion between the hydrate and solid surfaces and elucidating its underlying key determining factors can shed light on the fundamentals of novel antihydrate materials design. In this study, large-scale molecular simulations are employed to investigate the hydrate adhesion on solid surfaces, especially with focuses on the atomistic structures of intermediate layer and their influences on the adhesion. The results show that the structure of the intermediate layer formed between hydrate and solid surface is a competitive equilibrium of induced growth from both sides, and is regulated by the content of guest molecules. By comparing the fracture behaviors of the hydrate-solid surface system with different intermediate structures, it is found that both the lattice areal density of water structure and the adsorption of guest molecules on the interface together determine the adhesion strength. Based on the analysis of the adhesion strength distribution, we have also revealed the origins of the drastic difference in adhesion among different water structures such as ice and hydrate. Our simulation indicates that ice-adhesion strength is approximately five times that of lowest hydrate adhesion strength. This finding is surprisingly consistent with the available experimental results.

4.
Phys Chem Chem Phys ; 22(43): 24907-24916, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33124645

RESUMO

Microemulsions exist widely in nature, daily life and industrial manufacturing processes, including petroleum production, food processing, drug delivery, new material fabrication, sewage treatment, etc. The mechanical properties of microemulsion droplets and a correlation to their molecular structures are of vital importance to those applications. Despite studies on their physicochemical determinants, there are lots of challenges of exploring the mechanical properties of microemulsions by experimental studies. Herein, atomistic modelling was utilized to study the stability, deformation, and rupture of Janus oligomer enabled water-in-oil microemulsion droplets, aiming at revealing their intrinsic relationship with Janus oligomer based surfactants and oil structures. The self-emulsifying process from a water, oil and surfactant mixture to a single microemulsion droplet was modulated by the amphiphilicity and structure of the surfactants. Four microemulsion systems with an interfacial thickness in the range of 7.4-17.3 Å were self-assembled to explore the effect of the surfactant on the droplet morphology. By applying counter forces on the water core and the surfactant shell, the mechanical stability of the microemulsion droplets was probed at different ambient temperatures. A strengthening response and a softening regime before and after a temperature-dependent peak force were identified followed by the final rupture. This work demonstrates a practical strategy to precisely tune the mechanical properties of a single microemulsion droplet, which can be applied in the formation, de-emulsification, and design of microemulsions in oil recovery and production, drug delivery and many other applications.

5.
Soft Matter ; 15(17): 3607-3611, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30973176

RESUMO

Slide-ring crosslinked polydimethylsiloxane (PDMS) is designed and prepared for anti-icing/deicing applications. Compared with the covalent crosslinks, the slidable crosslinks enhance the mobility of polymer networks and endow the materials with low elastic modulus. The PDMS matrix guarantees the hydrophobicity of as-prepared coatings. These properties synergistically lead to ultra-low ice adhesion strength (13.0 ± 1.3 kPa) and excellent mechanical durability. The ice adhesion strength on the coating maintains a value of ∼12 kPa during 20 icing/deicing cycles, and increases gradually to a value of ∼22 kPa after 800 cycles of abrasions. The novel design strategy provides one-step forward to anti-icing/deicing solutions for targeted applications.

6.
Phys Chem Chem Phys ; 20(38): 24759-24767, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30229243

RESUMO

Water adhesion underlies wettabilities, and thus hydrophobicities, and defines surface properties like self-cleaning, icephobicity and many others. The nanomechanics of water adhesion, especially in the dynamic dewetting processes, has not been fully investigated. Here in this article, atomistic modeling and molecular dynamics simulations were utilized to probe the adhesion mechanics of water droplets on nanopillars and flat surfaces, covering dewetting in the Wenzel and the newly discovered monostable Cassie-Baxter states. The simulations were able to identify intermediate dewetting states on rough surfaces, and resolve the transition between wetting states under force. The results revealed characteristic features of dynamic water adhering stress underpinning dewetting on the nanoscale, which provided deeper knowledge on surface dewetting mechanics. This work complements nanoscale dewetting experiments for new fundamental insights in studies including nanoroughness design, enhanced oil recovery, anti-icing and others.

7.
Soft Matter ; 13(37): 6562-6568, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28895968

RESUMO

Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

8.
BMC Biol ; 13: 3, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592740

RESUMO

BACKGROUND: The discharge of the Cnidarian stinging organelle, the nematocyst, is one of the fastest processes in biology and involves volume changes of the highly pressurised (150 bar) capsule of up to 50%. Hitherto, the molecular basis for the unusual biomechanical properties of nematocysts has been elusive, as their structure was mainly defined as a stress-resistant collagenous matrix. RESULTS: Here, we characterise Cnidoin, a novel elastic protein identified as a structural component of Hydra nematocysts. Cnidoin is expressed in nematocytes of all types and immunostainings revealed incorporation into capsule walls and tubules concomitant with minicollagens. Similar to spider silk proteins, to which it is related at sequence level, Cnidoin possesses high elasticity and fast coiling propensity as predicted by molecular dynamics simulations and quantified by force spectroscopy. Recombinant Cnidoin showed a high tendency for spontaneous aggregation to bundles of fibrillar structures. CONCLUSIONS: Cnidoin represents the molecular factor involved in kinetic energy storage and release during the ultra-fast nematocyst discharge. Furthermore, it implies an early evolutionary origin of protein elastomers in basal metazoans.


Assuntos
Elastômeros/química , Nematocisto/fisiologia , Seda/química , Sequência de Aminoácidos , Animais , Western Blotting , Colágeno/metabolismo , Elasticidade , Regulação da Expressão Gênica , Hydra/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Imuno-Histoquímica , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Agregados Proteicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Seda/ultraestrutura , Fatores de Tempo
9.
Biophys J ; 107(4): 965-73, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140432

RESUMO

Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunoglobulin (Ig) domains, and the dimer interface at myomesin's 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼ 15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.


Assuntos
Conectina/metabolismo , Sarcômeros/metabolismo , Fenômenos Biomecânicos , Conectina/genética , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulinas/metabolismo , Simulação de Dinâmica Molecular , Redobramento de Proteína , Estrutura Secundária de Proteína , Desdobramento de Proteína
10.
Proc Natl Acad Sci U S A ; 108(34): 14139-44, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825161

RESUMO

The highly oriented filamentous protein network of muscle constantly experiences significant mechanical load during muscle operation. The dimeric protein myomesin has been identified as an important M-band component supporting the mechanical integrity of the entire sarcomere. Recent structural studies have revealed a long α-helical linker between the C-terminal immunoglobulin (Ig) domains My12 and My13 of myomesin. In this paper, we have used single-molecule force spectroscopy in combination with molecular dynamics simulations to characterize the mechanics of the myomesin dimer comprising immunoglobulin domains My12-My13. We find that at forces of approximately 30 pN the α-helical linker reversibly elongates allowing the molecule to extend by more than the folded extension of a full domain. High-resolution measurements directly reveal the equilibrium folding/unfolding kinetics of the individual helix. We show that α-helix unfolding mechanically protects the molecule homodimerization from dissociation at physiologically relevant forces. As fast and reversible molecular springs the myomesin α-helical linkers are an essential component for the structural integrity of the M band.


Assuntos
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Dobramento de Proteína , Fenômenos Biomecânicos , Conectina , Cinética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína
11.
Phys Chem Chem Phys ; 15(22): 8765-71, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633029

RESUMO

Stacking of ß-sheets results in a protein super secondary structure with remarkable mechanical properties. ß-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine ß-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; ß-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing ß-strands apart, while ß-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid ß-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between ß-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine ß-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker ß-sheet arrangement as they are missing a softening amorphous matrix.


Assuntos
Peptídeos beta-Amiloides/química , Seda/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
12.
Neoplasia ; 44: 100935, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717471

RESUMO

Voltage-dependent anion-selective channel protein 1 (VDAC1) is the most abundant protein in the mitochondrial outer membrane and plays a crucial role in the control of hepatocellular carcinoma (HCC) progress. Our previous research found that cytosolic molecular chaperone heat shock protein 90 (Hsp90) interacted with VDAC1, but the effect of the C-terminal and N-terminal domains of Hsp90 on the formation of VDAC1 oligomers is unclear. In this study, we focused on the effect of the C-terminal domain of Hsp90 on VDAC1 oligomerization, ubiquitination, and VDAC1 channel activity. We found that Hsp90 C-terminal domain inhibitor Novobiocin promoted VDAC1 oligomerization, release of cytochrome c, and activated mitochondrial apoptosis pathway. Atomic coarse particle modeling simulation revealed C-terminal domain of Hsp90α stabilized VDAC1 monomers. The purified VDAC1 was reconstituted into a planar lipid bilayer, and electrophysiology experiments of patch clamp showed that the Hsp90 C-terminal inhibitor Novobiocin increased VDAC1 channel conductance via promoting VDAC1 oligomerization. The mitochondrial ubiquitination proteomics results showed that VDAC1 K274 mono-ubiquitination was significantly decreased upon Novobiocin treatment. Site-directed mutation of VDAC1 (K274R) weakened Hsp90α-VDAC1 interaction and increased VDAC1 oligomerization. Taken together, our results reveal that Hsp90 C-terminal domain inhibition promotes VDAC1 oligomerization and VDAC1 channel conductance by decreasing VDAC1 K274 mono- ubiquitination, which provides a new perspective for mitochondria-targeted therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Apoptose , Novobiocina/farmacologia , Neoplasias Hepáticas/genética , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
13.
ACS Omega ; 7(12): 10225-10234, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382303

RESUMO

Design and fabrication of functional materials for anti-icing and deicing attract great attention from both the academic research and industry. Among them, the study of fish-scale-like materials has proved that enabling sequential rupture is an effective approach for weakening the intrinsic interface adhesion. Here, graphene platelets were utilized to construct fish-scale-like surfaces for easy ice detachment. Using a biomimicking arrangement of the graphene platelets, the surfaces were able to alter their structural morphology for the sequential rupture in response to external forces. With different packing densities of graphene platelets, all the surfaces showed universally at least 50% reduction in atomistic tensile ice adhesion strength. Because of the effect of sequential rupture, stronger ice-surface interactions did not lead to an obvious increase in ice adhesion. Interestingly, the high packing density of graphene platelets resulted in stable and reversible surface morphology in cyclic tensile and shearing tests, and subsequently high reproducibility of the sequential rupture mode. The fish-scale-like surfaces built and tested, together with the nanoscale deicing results, provided a close view of ice adhesion mechanics, which can promote future bioinspired, stress-responsive, anti-icing surface designs.

14.
Biophys J ; 100(5): 1298-305, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21354403

RESUMO

Here we decipher the molecular determinants for the extreme toughness of spider silk fibers. Our bottom-up computational approach incorporates molecular dynamics and finite element simulations. Therefore, the approach allows the analysis of the internal strain distribution and load-carrying motifs in silk fibers on scales of both molecular and continuum mechanics. We thereby dissect the contributions from the nanoscale building blocks, the soft amorphous and the strong crystalline subunits, to silk fiber mechanics. We identify the amorphous subunits not only to give rise to high elasticity, but to also ensure efficient stress homogenization through the friction between entangled chains, which also allows the crystals to withstand stresses as high as 2 GPa in the context of the amorphous matrix. We show that the maximal toughness of silk is achieved at 10-40% crystallinity depending on the distribution of crystals in the fiber. We also determined a serial arrangement of the crystalline and amorphous subunits in lamellae to outperform a random or a parallel arrangement, putting forward what we believe to be a new structural model for silk and other semicrystalline materials. The multiscale approach, not requiring any empirical parameters, is applicable to other partially ordered polymeric systems. Hence, it is an efficient tool for the design of artificial silk fibers.


Assuntos
Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Seda/química , Seda/metabolismo , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Aranhas , Estresse Mecânico
15.
Phys Chem Chem Phys ; 13(22): 10426-9, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21483983

RESUMO

A bottom-up computational approach involving Molecular Dynamics (MD) of silk fiber subunits and Finite Element (FE) simulations of whole spider silk fibers is presented. The approach is discussed with an emphasis on the benefits and bottlenecks of incorporating the atomistic and continuum models of crystalline and disordered domains in the fibers. The approach does not require any empirical parameters and it is applicable to similar semi-crystalline systems.


Assuntos
Seda/química , Animais , Cristalização , Simulação de Dinâmica Molecular , Aranhas/química
16.
Mater Horiz ; 8(12): 3266-3280, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842262

RESUMO

Gel materials have drawn great attention recently in the anti-icing research community due to their remarkable potential for reducing ice adhesion, inhibiting ice nucleation, and restricting ice propagation. Although the current anti-icing gels are in their infancy and far from practical applications due to poor durability, their outstanding prospect of icephobicity has already shed light on a new group of emerging anti-icing materials. There is a need for a timely review to consolidate the new trends and foster the development towards dedicated applications. Starting from the stage of icing, we first survey the relevant anti-icing strategies. The latest anti-icing gels are then categorized by their liquid phases into organogels, hydrogels, and ionogels. At the same time, the current research focuses, anti-icing mechanisms and shortcomings affiliated with each category are carefully analysed. Based upon the reported state-of-the-art anti-icing research and our own experience in polymer-based anti-icing materials, suggestions for the future development of the anti-icing gels are presented, including pathways to enhance durability, the need to build up the missing fundamentals, and the possibility to enable stimuli-responsive properties. The primary aim of this review is to motivate researchers in both the anti-icing and gel research communities to perform a synchronized effort to rapidly advance the understanding and making of gel-based next generation anti-icing materials.


Assuntos
Alimentos , Géis
17.
Adv Sci (Weinh) ; 8(21): e2101163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499428

RESUMO

Remarkable progress has been made in surface icephobicity in the recent years. The mainstream standpoint of the reported antiicing surfaces yet only considers the ice-substrate interface and its adjacent regions being of static nature. In reality, the local structures and the overall properties of ice-substrate interfaces evolve with time, temperature and various external stimuli. Understanding the dynamic properties of the icing interface is crucial for shedding new light on the design of new anti-icing surfaces to meet challenges of harsh conditions including extremely low temperature and/or long working time. This article surveys the state-of-the-art anti-icing surfaces and dissects their dynamic changes of the chemical/physical states at icing interface. According to the focused critical ice-substrate contacting locations, namely the most important ice-substrate interface and the adjacent regions in the substrate and in the ice, the available anti-icing surfaces are for the first time re-assessed by taking the dynamic evolution into account. Subsequently, the recent works in the preparation of dynamic anti-icing surfaces (DAIS) that consider time-evolving properties, with their potentials in practical applications, and the challenges confronted are summarized and discussed, aiming for providing a thorough review of the promising concept of DAIS for guiding the future icephobic materials designs.

18.
Adv Mater ; 33(23): e2008523, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938044

RESUMO

Current synthetic elastomers suffer from the well-known trade-off between toughness and stiffness. By a combination of multiscale experiments and atomistic simulations, a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness is demonstrated. The designed elastomer comprises homogeneous networks with ultrastrong, reversible, and sacrificial octuple hydrogen bonding (HB), which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture. Strong HBs and corresponding nanodomains enhance the stiffness by restricting the network mobility, and at the same time improve the toughness by dissipating energy during the transformation between different configurations. In addition, the stiffness mismatch between the hard HB domain and the soft poly(dimethylsiloxane)-rich phase promotes crack deflection and branching, which can further dissipate energy and alleviate local stress. These cooperative mechanisms endow the elastomer with both high fracture toughness (17016 J m-2 ) and high Young's modulus (14.7 MPa), circumventing the trade-off between toughness and stiffness. This work is expected to impact many fields of engineering requiring elastomers with unprecedented mechanical performance.

19.
J Am Chem Soc ; 132(48): 17277-81, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21080669

RESUMO

With the help of single molecule force spectroscopy and molecular dynamics simulations, we determine the surface-induced structure of a single engineered spider silk protein. An amyloid like structure is induced in the vicinity of a surface with high surface energy and can be prohibited in the presence of a hydrophobic surface. The derived molecular energy landscapes highlight the role of single silk protein structure for the macroscopic toughness of spider silk.


Assuntos
Fibroínas/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Propriedades de Superfície , Termodinâmica
20.
J Hazard Mater ; 390: 122176, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006849

RESUMO

The fundamental mechanism behind oil/water separation materials is their surface wettability that allows either oil or water to pass through. The conventional materials for oil/water separation generally have extreme wettability, namely superhydrophilic for water separation and superhydrophobic for oil separation. Using easily accessible materials that are medium hydrophobic or even relatively hydrophilic for preparing highly efficient oil/water separators have rarely been reported. In this work, a new strategy by triggering phase transition of infused lubricant from liquid to solid state in porous structure is realized in fabricating slippery lubricant infused porous structure for oil/water separations. By infusing polyester fabric with coconut oil, after phase transition, excellent water repellency and oil permeability by an absorbing-permeating mechanism are achieved, despite the low water contact angle on the new material. Although the new phase transformable slippery lubricant infused porous structure, features much milder hydrophobicity than conventional oil/water separators, it can remove diverse types of oil from water with high efficiencies. The phase transformable slippery lubricant infused porous structure is able to maintain their water repellency after immersing in high concentration salt (10 wt% NaCl), acid (25 % HCl), alkaline (25 % NH3·H2O) solutions for 120 h, showing remarkably functional durability in harsh environment. The lubricant phase transition mechanism proposed in this study is universally applicable to porous substrates with various chemical compositions and pore structures, such as porous sponges or even daily life breads, for creating efficient oil/water separators, which can serve as a novel accessible design principle of phase transformable slippery lubricant infused porous structure for eco-friendly oil/water separators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA