Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118587, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437903

RESUMO

Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.


Assuntos
Monitoramento Ambiental , Nitratos , Isótopos de Nitrogênio , Poluentes Químicos da Água , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Fertilizantes/análise , Rios/química , Cidades , Irrigação Agrícola
2.
Bull Environ Contam Toxicol ; 103(6): 789-795, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605158

RESUMO

Copper (Cu) bioavailability varies under water conditions. In the present study, the whole life of zebrafish was divided into three different life stages (larvae, juvenile and adult) based on the growth curve, then the influences of water hardness and dissolved organic carbon (DOC) concentration on the acute toxicity of zebrafish were respectively investigated. The results indicated that the life stages had significant effects on Cu toxicity. The larvae stage was less sensitive to Cu than both the juvenile and adult stages. With the increase of water hardness, the toxicity of Cu on zebrafish was decreased, a linear relationship was observed between water hardness and Cu toxicity, and the same was true for DOC concentration. The results showed that taking the 24 days juvenile zebrafish to study the water quality criteria of Cu was stable, sensitive and economical.


Assuntos
Cobre/toxicidade , Água Doce/química , Hidrocarbonetos/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Cobre/química , Dureza , Hidrocarbonetos/química , Solubilidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Qualidade da Água/normas
3.
Front Plant Sci ; 14: 1120584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089655

RESUMO

The normal methods of agricultural production worldwide have been strongly affected by the frequent occurrence of drought. Rice rhizosphere microorganisms have been significantly affected by drought stress. To provide a hypothetical basis for improving the drought resistance and N utilization efficiency of rice, the study adopted a barrel planting method at the heading stage, treating rice with no drought or drought stress and three different nitrogen (N) levels. Untargeted metabolomics and 16S rRNA gene sequencing technology were used to study the changes in microorganisms in roots and the differential metabolites (DMs) in rhizosphere soil. The results showed that under the same N application rate, the dry matter mass, N content and N accumulation in rice plants increased to different degrees under drought stress. The root soluble protein, nitrate reductase and soil urease activities were improved over those of the no-drought treatment. Proteobacteria, Bacteroidota, Nitrospirota and Zixibacteria were the dominant flora related to N absorption. A total of 184 DMs (98 upregulated and 86 downregulated) were identified between low N with no drought (LN) and normal N with no drought (NN); 139 DMs (83 upregulated and 56 downregulated) were identified between high N with no drought (HN) and NN; 166 DMs (103 upregulated and 63 downregulated) were identified between low N with drought stress (LND) and normal N with drought stress (NND); and 124 DMs (71 upregulated and 53 downregulated) were identified between high N with drought stress (HND) and NND. Fatty acyl was the metabolite with the highest proportion. KEGG analysis showed that energy metabolism pathways, such as D-alanine metabolism and the phosphotransferase system (PTS), were enriched. We conclude that N-metabolism enzymes with higher activity and higher bacterial diversity have a significant effect on drought tolerance and nitrogen uptake in rice.

4.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627078

RESUMO

The aim of this study was to explore the differences in metabolites related to rice quality formation under different nitrogen (N) fertilizers and planting densities. In this study, Yangnongxiang 28 was used as the experimental material with the following conditions: high nitrogen and low density (HNLD; high nitrogen: 360 kg·hm-2, low density: the row spacing of rice plants was 16 cm × 30 cm), medium nitrogen and medium density (MNMD; medium nitrogen: 270 kg·hm-2, medium density: the row spacing of rice plants was 13 cm × 30 cm), and low nitrogen and high density (LNHD; low nitrogen: 270 kg·hm-2, high density: the row spacing of rice plants was 10 cm × 30 cm). The rice quality indexes, including the processing quality, amylose content, and taste value, were compared under different treatments, and we analyzed their relationship with the metabolites. The results show that the milled rice rate of HNLD was 13.85% and was 1.89% higher than that of LNHD and MNMD, respectively. The head milled rice rate of HNLD was 32.45% and 6.39% higher than that of LNHD and MNMD, respectively. The milled rice rate and head milled rice rate of HNLD and MNMD were significantly higher than those of LNHD. This study identified 22 differential metabolites (DMs) in HNLD and LNHD, 38 DMs in HNLD and MNMD, and 23 DMs in LNHD and MNMD. Most of the identified differential metabolites were lipid metabolites, which were mainly enriched in the lipid metabolic pathways and amino acid metabolic pathways. The correlation analysis showed that the lipid metabolite physapubescin was significantly negatively correlated with the taste value. The lipid metabolites 2-undecen-1-ol, lucidenic acid F, and 8-deoxy-11,13-dihydroxygrosheimin were significantly positively correlated with the taste value. Lipids may be important substances that lead to differences in taste under different nitrogen fertilizer and density treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA