Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2304242120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607234

RESUMO

Zoonotic poxviruses such as mpox virus (MPXV) continue to threaten public health safety since the eradication of smallpox. Vaccinia virus (VACV), the prototypic poxvirus used as the vaccine strain for smallpox eradication, is the best-characterized member of the poxvirus family. VACV encodes a serine protease inhibitor 1 (SPI-1) conserved in all orthopoxviruses, which has been recognized as a host range factor for modified VACV Ankara (MVA), an approved smallpox vaccine and a promising vaccine vector. FAM111A (family with sequence similarity 111 member A), a nuclear protein that regulates host DNA replication, was shown to restrict the replication of a VACV SPI-1 deletion mutant (VACV-ΔSPI-1) in human cells. Nevertheless, the detailed antiviral mechanisms of FAM111A were unresolved. Here, we show that FAM111A is a potent restriction factor for VACV-ΔSPI-1 and MVA. Deletion of FAM111A rescued the replication of MVA and VACV-ΔSPI-1 and overexpression of FAM111A significantly reduced viral DNA replication and virus titers but did not affect viral early gene expression. The antiviral effect of FAM111A necessitated its trypsin-like protease domain and DNA-binding domain but not the PCNA-interacting motif. We further identified that FAM111A translocated into the cytoplasm upon VACV infection by degrading the nuclear pore complex via its protease activity, interacted with VACV DNA-binding protein I3, and promoted I3 degradation through autophagy. Moreover, SPI-1 from VACV, MPXV, or lumpy skin disease virus was able to antagonize FAM111A by prohibiting its nuclear export. Our findings reveal the detailed mechanism by which FAM111A inhibits VACV and provide explanations for the immune evasive function of VACV SPI-1.


Assuntos
Poxviridae , Varíola , Vacínia , Animais , Bovinos , Humanos , Vaccinia virus/genética , Inibidores de Serina Proteinase , Proteínas Virais/genética , Replicação do DNA , Especificidade de Hospedeiro , DNA Viral , Replicação Viral , Receptores Virais
2.
J Virol ; : e0052124, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874361

RESUMO

The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE: MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.

3.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37480553

RESUMO

Most life activities in organisms are regulated through protein complexes, which are mainly controlled via Protein-Protein Interactions (PPIs). Discovering new interactions between proteins and revealing their biological functions are of great significance for understanding the molecular mechanisms of biological processes and identifying the potential targets in drug discovery. Current experimental methods only capture stable protein interactions, which lead to limited coverage. In addition, expensive cost and time consuming are also the obvious shortcomings. In recent years, various computational methods have been successfully developed for predicting PPIs based only on protein homology, primary sequences of protein or gene ontology information. Computational efficiency and data complexity are still the main bottlenecks for the algorithm generalization. In this study, we proposed a novel computational framework, HNSPPI, to predict PPIs. As a hybrid supervised learning model, HNSPPI comprehensively characterizes the intrinsic relationship between two proteins by integrating amino acid sequence information and connection properties of PPI network. The experimental results show that HNSPPI works very well on six benchmark datasets. Moreover, the comparison analysis proved that our model significantly outperforms other five existing algorithms. Finally, we used the HNSPPI model to explore the SARS-CoV-2-Human interaction system and found several potential regulations. In summary, HNSPPI is a promising model for predicting new protein interactions from known PPI data.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Algoritmos , Sequência de Aminoácidos , Benchmarking
4.
Appl Environ Microbiol ; 90(3): e0185123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426790

RESUMO

Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-ß-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-ß-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.


Assuntos
Rhizobium , Rhizobium/genética , Rhizobium/metabolismo , Fixação de Nitrogênio/genética , Pisum sativum , Glucuronidase/metabolismo , Carboidratos , Nitrogênio/metabolismo , Solo , Vitamina B 12/metabolismo , Simbiose/genética
5.
Angew Chem Int Ed Engl ; 63(24): e202403980, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588065

RESUMO

Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3 - and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmol ⋅ g-1 ⋅ h-1 and a Faradaic efficiency of 48.88 % at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15 %, the Faradaic efficiency of urea synthesis remains robust at 42.33 %. The tandem reduction procedure was further confirmed by in situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.

6.
Angew Chem Int Ed Engl ; 63(29): e202405873, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709722

RESUMO

The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.

7.
Phys Chem Chem Phys ; 25(34): 23100-23110, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37602670

RESUMO

The complexity of modeling flexible crystals, such as ZIF-8, mainly stems from the handling of intramolecular interactions. Numerous force fields have been proposed in the literature to describe the interactions between atoms in ZIF-8. We employ seven force fields to examine the structure and dynamic behavior of water molecules confined in ZIF-8, with the aim of investigating the impact of force fields on simulation results. Various structural characterization methods consistently indicate that the choice of different force fields has quantitative effects but no qualitative effects on the structural characteristics of confined water. Additionally, the force fields do not impact the qualitative description of the diffusion mechanism. Both mean-square displacement and van Hove autocorrelation function reveal two characteristic movements of water molecules diffusing in ZIF-8: a short-time intra-cavity hopping process and a long-time inter-cavity hopping process. However, the framework flexibility is found to play a crucial role in determining the order of spatial arrangement and local structure, self-diffusion coefficient and reorientational dynamics of confined water. Specifically, the DREIDING force field gives rise to an unrealistic stiff framework, enhancing the order of spatial arrangement and diminishing the local ordered structure of confined water. Meanwhile, it results in much slower translational and reorientational dynamics. Hence, the general DREIDING force field cannot be considered for providing a quantitative description of the water structure and dynamics.

8.
Phys Chem Chem Phys ; 25(38): 26203-26210, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740356

RESUMO

Charge separation in organic solar cells is a long-lasting and heavily debated issue. Here, we use the surface hopping method based on the Pariser-Parr-Pople (PPP) Hamiltonian and configuration interaction singles (CIS) approximation to simulate the charge separation process in an organic donor-acceptor system. The system is composed of one donor polymer chain and four acceptor polymer chains, and they are all stacked face-to-face. We let the system to relax from a photoexcited state, and then we observed that the electron is transferred from the donor chain to different acceptor chains and the hole is left on the donor chain, forming polaron pairs with different electron-hole distances. By performing statistical analysis on a number of trajectories, we found that the electron and the hole are fully separated before the system relaxes to its lowest excited state. The yield of free charges shows a significant dependence on the donor-acceptor band offset which provides the driving force for charge separation, while showing negligible dependence on the photoexcitation energy. The external electric field has a remarkable effect on the yield of free charges.

9.
J Phys Chem A ; 127(12): 2787-2794, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36924022

RESUMO

Atomically dispersed catalysts (ADCs) with a well-defined structure are theoretically desirable for a high-selectivity photocatalytic reaction. However, achieving high product selectivity remains a practical challenge for ADCs-based photocatalysts. Herein, we reveal a spin polarization effect on achieving high product selectivity (95.0%) toward the photocatalytic nitrobenzene (PhNO2) hydrogenation to aniline (PhNH2) on atomically dispersed Fe site-loaded graphitic carbon nitride (Fe/g-C3N4). In combination with the Gibbs free energy diagram and electronic structure analysis, the origin of the photocatalytic performance is attributed not only to the strong metal-support interaction between the Fe site and g-C3N4, but more importantly to the strong spin polarization effect that promotes the potential-determining step (PDS) of *PhNO to *PhNOH. This work could be helpful for the design of ADCs-based photocatalysts in view of the spin polarization effect.

10.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959727

RESUMO

Acetaminophen (APAP)-induced liver injury is a common hepatic disease resulting from drug abuse. Few targeted treatments are available clinically nowadays. The flower bud of Rosa rugosa has a wide range of biological activities. However, it is unclear whether it alleviates liver injury caused by APAP. Here, we prepared an ethanol extract of Rosa rugosa (ERS) and analyzed its chemical profile. Furthermore, we revealed that ERS significantly ameliorated APAP-induced apoptosis and ferroptosis in AML-12 hepatocytes and dampened APAP-mediated cytotoxicity. In AML-12 cells, ERS elevated Sirt1 expression, boosted the LKB1/AMPK/Nrf2 axis, and thereby crippled APAP-induced intracellular oxidative stress. Both EX527 and NAM, which are chemically unrelated inhibitors of Sirt1, blocked ERS-induced activation of LKB1/AMPK/Nrf2 signaling. The protection of ERS against APAP-triggered toxicity in AML-12 cells was subsequently abolished. As expression of LKB1 was knocked down, ERS still upregulated Sirt1 but failed to activate AMPK/Nrf2 cascade or suppress cytotoxicity provoked by APAP. Results of in vivo experiments showed that ERS attenuated APAP-caused hepatocyte apoptosis and ferroptosis and improved liver injury and inflammation. Consistently, ERS boosted Sirt1 expression, increased phosphorylations of LKB1 and AMPK, and promoted Nrf2 nuclear translocation in the livers of APAP-intoxicated mice. Hepatic transcriptions of HO-1 and GCLC, which are downstream antioxidant genes of Nrf2, were also significantly increased in response to ERS. Our results collectively indicated that ERS effectively attenuates APAP-induced liver injury by activating LKB1/AMPK/Nrf2 cascade. Upregulated expression of Sirt1 plays a crucial role in ERS-mediated activation of LKB1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Rosa , Animais , Camundongos , Acetaminofen/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Rosa/metabolismo , Transdução de Sinais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Sirtuína 1/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado , Hepatócitos , Estresse Oxidativo , Leucemia Mieloide Aguda/metabolismo
11.
World J Microbiol Biotechnol ; 39(10): 278, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37582899

RESUMO

Milbemycins (MILs), a group of 16-membered insecticidal macrocylic lactones, are widely used as the biological pesticide and the precursors of semi-synthetic veterinary drugs. Polyketide synthases (PKSs), which require phosphopantetheinyl transferases (PPTases) to activate their ACP domains from apo forms to holo forms, catalyze the backbone biosynthesis of MILs. Here we found there was a complex phosphopantetheinylation network mediated by five putative PPTases in Streptomyces bingchenggensis. Repression mutants of PpA27 and PpA62 via CRISPRi both produced significantly lower yields of MILs than that of the control strain. Repression mutant of PpA68 led to abolishment of the pigment production. MILs production was significantly enhanced by PpA27 overexpression, while not by the overexpression of other PPTases. PpA27 was thus proved a dedicated post-translational enzyme to activate PKSs involved in the MILs biosynthesis. MILs titer was further enhanced by co-overexpression of PpA27 and MilR, the pathway­specific transcriptional activator of MIL biosynthetic gene cluster. When PpA27 and MilR were co-overexpressed in the industrial S. bingchenggensis HMB, MILs production was increased by 40.5%. These results indicated that tuning the antibiotic biosynthetic pathway by co-engineering transcriptional regulation network and post-translational phosphopantetheinylation network is an effective strategy for antibiotic production improvement.


Assuntos
Antibacterianos , Macrolídeos , Macrolídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/genética
12.
Angew Chem Int Ed Engl ; 62(10): e202216717, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597591

RESUMO

Herein, we fabricated a π-π stacking hybrid photocatalyst by combining two two-dimensional (2D) materials: g-C3 N4 and a Cu-porphyrin metal-organic framework (MOF). After an aerobic photocatalytic pretreatment, this hybrid catalyst exhibited an unprecedented ability to photocatalytically reduce CO2 to CO and CH4 under the typical level (20 %) of O2 in the air. Intriguingly, the presence of O2 did not suppress CO2 reduction; instead, a fivefold increase compared with that in the absence of O2 was observed. Structural analysis indicated that during aerobic pretreatment, the Cu node in the 2D-MOF moiety was hydroxylated by the hydroxyl generated from the reduction of O2 . Then the formed hydroxylated Cu node maintained its structure during aerobic CO2 reduction, whereas it underwent structural alteration and was reductively devitalized in the absence of O2 . Theoretical calculations further demonstrated that CO2 reduction, instead of O2 reduction, occurred preferentially on the hydroxylated Cu node.

13.
Angew Chem Int Ed Engl ; 62(20): e202300469, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932854

RESUMO

Herein we report the vital role of spin polarization in proton-transfer-mediated water oxidation over a magnetized catalyst. During the electrochemical oxygen evolution reaction (OER) over ferrimagnetic Fe3 O4 , the external magnetic field induced a remarkable increase in the OER current, however, this increment achieved in weakly alkaline pH (pH 9) was almost 20 times that under strongly alkaline conditions (pH 14). The results of the surface modification experiment and H/D kinetic isotope effect investigation confirm that, at weakly alkaline pH, during the nucleophilic attack of FeIV =O by molecular water, the magnetized Fe3 O4 catalyst polarizes the spin states of the nucleophilic attacking intermediates. The spin-enhanced singlet O-H cleavage and triplet O-O bonding occur synergistically, which promotes the O2 generation more significantly than the strongly alkaline case involving only spin-enhanced O-O bonding.

14.
Phys Chem Chem Phys ; 24(16): 9557-9563, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394001

RESUMO

With the discovery of the chiral-induced spin selectivity (CISS) effect, it has been recognized that spin and structural spin-orbit coupling (SOC) play important roles in the electro-optical properties of chiral materials. We redefine the spin-dependent current and magnetic moment operators to include chiral-induced SOC in a helical polymer and deduce optical absorption and circular dichroism (CD) formulae. The fine structure in the optical spectra is calculated for a helical polymer described with the tight-binding model. The effects of both the electron orbit and spin on the optical absorption and CD are discussed. Our investigations demonstrate that the synergy between the electron orbit and spin will contribute to higher-sensitivity circularly polarized light (CPL) detection.

15.
Phys Chem Chem Phys ; 24(8): 5220-5232, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35167632

RESUMO

A classical atomistic simulation study is reported for the microscopic structure and dynamics of a water/methanol mixture confined in flexible nanoporous zeolitic imidazolate framework ZIF-8. Both the radial density distribution and vivid two-dimensional density profile demonstrate that methanol molecules can roughly be viewed as "embedded" between two layers of water molecules to form a "sandwich" structure. The reason for the formation of such a specific structure is explained based on the hydrogen-bonding state and the strength of various hydrogen bonds. The investigation of guest molecular diffusion shows that the self-diffusion coefficient of confined water is generally one to two orders of magnitude smaller than that of bulk water. In addition, the dependence of the self-diffusion coefficient on loading is non-monotonic: the self-diffusion coefficient firstly shows a significant increase and then decreases at higher loading. Moreover, both the structure and dynamics of the hydrogen bond (HB) network of confined water molecules are investigated in a spatially resolved manner. The results indicate that both the HB structure and dynamics of water molecules near the ZIF-8 surface deviate significantly from those of bulk water. However, while water molecules located at the pore center are relatively similar to bulk water molecules with respect to the HB structure, they exhibit strong slowdown in HB dynamics when compared with bulk water. This simulation study elucidates in detail the structural and dynamical properties of a water/methanol mixture in nanoscopic ZIF-8 confinement, which is expected to provide a deep insight into the role of porous fillers, such as ZIF-8, in improving the performance of the dehydration of alcohols via pervaporation and other related processes.

16.
J Am Chem Soc ; 143(7): 2984-2993, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570952

RESUMO

To realize the evolution of C2+ hydrocarbons like C2H4 from CO2 reduction in photocatalytic systems remains a great challenge, owing to the gap between the relatively lower efficiency of multielectron transfer in photocatalysis and the sluggish kinetics of C-C coupling. Herein, with Cu-doped zeolitic imidazolate framework-8 (ZIF-8) as a precursor, a hybrid photocatalyst (CuOX@p-ZnO) with CuOX uniformly dispersed among polycrystalline ZnO was synthesized. Upon illumination, the catalyst exhibited the ability to reduce CO2 to C2H4 with a 32.9% selectivity, and the evolution rate was 2.7 µmol·g-1·h-1 with water as a hole scavenger and as high as 22.3 µmol·g-1·h-1 in the presence of triethylamine as a sacrificial agent, all of which have rarely been achieved in photocatalytic systems. The X-ray absorption fine structure spectra coupled with in situ FT-IR studies reveal that, in the original catalyst, Cu mainly existed in the form of CuO, while a unique Cu+ surface layer upon the CuO matrix was formed during the photocatalytic reaction, and this surface Cu+ site is the active site to anchor the in situ generated CO and further perform C-C coupling to form C2H4. The C-C coupling intermediate *OC-COH was experimentally identified by in situ FT-IR studies for the first time during photocatalytic CO2 reduction. Moreover, theoretical calculations further showed the critical role of such Cu+ sites in strengthening the binding of *CO and stabilizing the C-C coupling intermediate. This work uncovers a new paradigm to achieve the reduction of CO2 to C2+ hydrocarbons in a photocatalytic system.

17.
J Gen Virol ; 101(9): 910-920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081750

RESUMO

The H4 subtype avian influenza virus (AIV) continues to circulate in both wild birds and poultry, and occasionally infects mammals (e.g. pigs). H4-specific antibodies have also been detected in poultry farm workers, which suggests that H4 AIV poses a potential threat to public health. However, the molecular mechanism by which H4 AIVs could gain adaptation to mammals and whether this has occurred remain largely unknown. To better understand this mechanism, an avirulent H4N6 strain (A/mallard/Beijing/21/2011, BJ21) was serially passaged in mice and mutations were characterized after passaging. A virulent mouse-adapted strain was generated after 12 passages, which was tentatively designated BJ21-MA. The BJ21-MA strain replicated more efficiently than the parental BJ21, both in vivo and in vitro. Molecular analysis of BJ21-MA identified four mutations, located in proteins PB2 (E158K and E627K) and HA (L331I and G453R, H3 numbering). Further studies showed that the introduction of E158K and/or E627K substitutions into PB2 significantly increased polymerase activity, which led to the enhanced replication and virulence of BJ21-MA. Although individual L331I or G453R substitutions in HA did not change the pathogenicity of BJ21 in mice, both mutations significantly enhanced virulence. In conclusion, our data presented in this study demonstrate that avian H4 virus can adapt to mammals by point mutations in PB2 or HA, which consequently poses a potential threat to public health.


Assuntos
Substituição de Aminoácidos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Adaptação ao Hospedeiro , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Influenza Aviária/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Mutação , Infecções por Orthomyxoviridae/patologia , RNA Polimerase Dependente de RNA/metabolismo , Receptores Virais/metabolismo , Inoculações Seriadas , Proteínas Virais/metabolismo , Replicação Viral
18.
J Chem Phys ; 152(3): 034502, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968977

RESUMO

We propose a microscopic theory for the decoupling of self-diffusion and structural relaxation in glass-forming liquids within the Elastically Collective Nonlinear Langevin Equation (ECNLE) activated dynamics framework. Our central hypothesis is that the heterogeneity relevant to this problem is static fluctuations of local density on the scale of 3-4 particle diameters and how this changes local packing correlations. These fluctuations modify the degree of dynamical cage expansion that mechanistically couples intracage large amplitude hopping and longer range collective elasticity in ECNLE theory. Decoupling only emerges in the deeply supercooled regime where the strongly temperature dependent elastic barrier becomes non-negligible relative to its noncooperative local analog. The theory makes predictions for various aspects of the decoupling phenomenon, including apparent fractional power law Stokes-Einstein behavior, that appear to be consistent with experiments and simulations on hard sphere fluids and molecular liquids. Of central importance is a microscopic connection between the barrier fluctuation variance and most probable barrier height. Sensible results are also obtained for the nonexponential stretching of a generic relaxation time correlation function and its temperature evolution. Nonuniversality can arise from the relative importance of the local and collective barriers (related to fragility) and the precise magnitude of the length scale that defines the transition from local cage to elastic physics. Comparison is made with a traplike model based on a Gaussian distribution of barriers.

19.
Phys Chem Chem Phys ; 21(24): 12924-12930, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31165113

RESUMO

We report a comprehensive theory based on the extended Su-Schrieffer-Heeger (SSH) model to study the interconversion from the dark triplet exciton state to a bright singlet one in molecular heterojunctions, containing both intrachain and interchain excitons. By studying the spin mixing and the projection of excitons onto the pure singlet and triplet excitons, unlike usual methods, we found that the internal electroluminescent quantum efficiency, which is largely determined by the singlet fraction, can be widely tuned by the spin-orbit coupling strength, the intensity of hyperfine interaction, electron-phonon coupling and the site energy offset of the two chains constituting the molecular heterojunctions. In addition, the interchain excitons possess a higher fraction of singlet states in comparison with the intrachain excitons. Remarkably, it can reach up to 52% by proper choice of the above-mentioned physical parameters. Our results outline a novel approach to further improve the luminous efficiency of organic light emitting diodes.

20.
Soft Matter ; 14(34): 7052-7063, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30112537

RESUMO

We generalize our non-classical theory for the shear rheology of entangled flexible polymer liquids to address the consequences of a deformation-modified anharmonic tube confinement field. Numerical results for stress-strain curves, orientational relaxation time, primitive path (PP) step orientational order parameter, dynamic tube diameter and transverse entropic barrier under nonequilibrium conditions are presented as a function of dimensionless shear rate, strain and degree of entanglement. Deformation-induced changes of the tube field have essentially no effect on rheology under fast deformations conditions corresponding to Rouse Weissenberg numbers WiR > 1 because of the dominance of PP chain stretch. However, the scaling behavior of the effective orientational relaxation time and rheological response at low deformation rates WiR < 1 are significantly modified, with the stress overshoot coordinates predicted to become shear rate and degree of entanglement dependent. Stress-assisted transverse activated barrier hopping as a new channel of orientational relaxation is found to be potentially important when WiR < 1. The dynamic tube diameter and transverse entropic barrier that confines chains in a tube are rich functions of strain, shear rate and degree of entanglement. Deformation can increase or decrease the tube diameter, and non-monotonic changes with strain are possible due to competing consequences of PP orientation, chain stretch and stress. The transverse barrier is relatively high for all strains below the stress overshoot, for weaker entanglement, and for WiR > 1, corresponding to a dynamically stable tube. But for high enough degrees of entanglement and WiR < 1, although the barrier still exists it can become very low.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA