Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISA Trans ; 133: 285-301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35811160

RESUMO

The aluminum fluoride (AF) addition in aluminum electrolysis process (AEP) can directly influence the current efficiency, energy consumption, and stability of the process. This paper proposes an optimization scheme for AF addition based on pruned sparse fuzzy neural network (PSFNN), aiming at providing an optimal AF addition for aluminum electrolysis cell under normal superheat degree (SD) condition. Firstly, a Gaussian mixture model (GMM) is introduced to identify SD conditions in which the operating modes of AEP are unknown. Then, PSFNN is proposed to establish the AF addition model under normal SD condition identified by GMM. Specifically, a sparse regularization term is designed in loss function of PSFNN to extract the sparse representation from nonlinear process data. A structure optimization strategy based on enhanced optimal brain surgeon (EOBS) algorithm is proposed to prune redundant neurons in the rule layer. Mini-batch gradient descent and AdaBound optimizer are then introduced to optimize the parameters of PSFNN. Finally, the performance is confirmed on the simulated Tennessee Eastman process (TEP) and real-world AEP. Experimental results demonstrate that the proposed scheme provides a satisfactory performance.

2.
Sci Adv ; 8(39): eabq2542, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170359

RESUMO

Impact glasses found in lunar soils provide a possible window into the impact history of the inner solar system. However, their use for precise reconstruction of this history is limited by an incomplete understanding of the physical mechanisms responsible for their origin and distribution and possible relationships to local and regional geology. Here, we report U-Pb isotopic dates and chemical compositions of impact glasses from the Chang'e-5 soil and quantitative models of impact melt formation and ejection that account for the compositions of these glasses. The predominantly local provenance indicated by their compositions, which constrains transport distances to <~150 kilometers, and the age-frequency distribution are consistent with formation mainly in impact craters 1 to 5 kilometers in diameter. Based on geological mapping and impact cratering theory, we tentatively identify specific craters on the basaltic unit sampled by Chang'e-5 that may have produced these glasses and compare their ages with the impact record of the asteroid belt.

3.
Science ; 374(6569): 887-890, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618547

RESUMO

Orbital data indicate that the youngest volcanic units on the Moon are basalt lavas in Oceanus Procellarum, a region with high levels of the heat-producing elements potassium, thorium, and uranium. The Chang'e-5 mission collected samples of these young lunar basalts and returned them to Earth for laboratory analysis. We measure an age of 1963 ± 57 million years for these lavas and determine their chemical and mineralogical compositions. This age constrains the lunar impact chronology of the inner Solar System and the thermal evolution of the Moon. There is no evidence for high concentrations of heat-producing elements in the deep mantle of the Moon that generated these lavas, so alternate explanations are required for the longevity of lunar magmatism.

4.
Neural Netw ; 116: 1-10, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30986722

RESUMO

Outlet ferrous ion concentration is an essential indicator to manipulate the goethite process in the zinc hydrometallurgy plant. However, it cannot be measured on-line, which leads to the delay of this feedback information. In this study, a self-adjusting structure radial basis function neural network (SAS-RBFNN) is developed to predict the outlet ferrous ion concentration on-line. First, a supervised cluster algorithm is proposed to initialize the RBFNN. Then, the network structure is adjusted by the developed self-adjusting structure mechanism. This mechanism can merge or divide the hidden neurons according to the distance of the clusters to achieve the adaptability of the RBFNN. Finally, the connection weights are determined by the gradient-based algorithm. The convergence of the SAS-RBFNN is analyzed by the Lyapunov criterion. A simulation for a benchmark problem shows the effectiveness of the proposed network. The SAS-RBFNN is then applied to predict the outlet ferrous ion concentration in the goethite process. The results demonstrate that this network can provide a more accurate prediction than the mathematical model, even under the fluctuating production condition.


Assuntos
Algoritmos , Compostos Ferrosos/análise , Compostos de Ferro/análise , Metalurgia/métodos , Minerais/análise , Redes Neurais de Computação , Retroalimentação , Previsões , Neurônios
5.
IEEE Trans Cybern ; 48(12): 3313-3322, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29994557

RESUMO

In the iron removal process, which is composed of four cascaded reactors, outlet ferrous ion concentration (OFIC) is an important technical index for each reactor. The descent gradient of OFIC indicates the reduced degree of ferrous ions in each reactor. Finding the optimal descent gradient of OFIC is tightly close to the effective iron removal and the optimal operation of the process. This paper proposes a coordinated optimization strategy for setting the descent gradient of OFIC. First, an optimal setting module is established to determine the initial set-points of the descent gradient. The oxygen utilization ratio (OUR), an important parameter in this module, cannot be measured online. Therefore, a self-adjusting RBF (SARBF) neural network with an adaptive learning rate is developed to estimate the OUR. The convergence of the SARBF neural network is discussed. Then, a coordinated optimization strategy is proposed to adjust the set-points of the descent gradient when the measured OFICs drift away from their desired set-pints. If the final OFIC does not satisfy the process requirements, a compensation mechanism is developed to provide a compensation for the set-points of the descent gradient. Finally, industrial experiments in the largest zinc hydrometallurgy plant validate the effectiveness of the proposed coordinated optimization strategy. Our strategy improves the qualified ratio of the OFIC and the quality of the goethite precipitate. More profit is created to the iron removal process after our strategy is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA