Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Cell ; 180(4): 645-654.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004460

RESUMO

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Animais , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
2.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598325

RESUMO

Antibodies are essential to life, and knowing their structures can facilitate the understanding of antibody-antigen recognition mechanisms. Precise antibody structure prediction has been a core challenge for a prolonged period, especially the accuracy of H3 loop prediction. Despite recent progress, existing methods cannot achieve atomic accuracy, especially when the homologous structures required for these methods are not available. Recently, RoseTTAFold, a deep learning-based algorithm, has shown remarkable breakthroughs in predicting the 3D structures of proteins. To assess the antibody modeling ability of RoseTTAFold, we first retrieved the sequences of 30 antibodies as the test set and used RoseTTAFold to model their 3D structures. We then compared the models constructed by RoseTTAFold with those of SWISS-MODEL in a different way, in which we stratified Global Model Quality Estimate (GMQE) into three different ranges. The results indicated that RoseTTAFold could achieve results similar to SWISS-MODEL in modeling most CDR loops, especially the templates with a GMQE score under 0.8. In addition, we also compared the structures modeled by RoseTTAFold, SWISS-MODEL and ABodyBuilder. In brief, RoseTTAFold could accurately predict 3D structures of antibodies, but its accuracy was not as good as the other two methods. However, RoseTTAFold exhibited better accuracy for modeling H3 loop than ABodyBuilder and was comparable to SWISS-MODEL. Finally, we discussed the limitations and potential improvements of the current RoseTTAFold, which may help to further the accuracy of RoseTTAFold's antibody modeling.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Algoritmos , Anticorpos/química , Modelos Moleculares , Conformação Proteica
3.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33051641

RESUMO

Delineating the fingerprint or feature vector of a receptor/protein will facilitate the structural and biological studies, as well as the rational design and development of drugs with high affinities and selectivity. However, protein is complicated by its different functional regions that can bind to some of its protein partner(s), substrate(s), orthosteric ligand(s) or allosteric modulator(s) where cogent methods like molecular fingerprints do not work well. We here elaborate a scoring-function-based computing protocol Molecular Complex Characterizing System to help characterize the binding feature of protein-ligand complexes. Based on the reported receptor-ligand interactions, we first quantitate the energy contribution of each individual residue which may be an alternative of MD-based energy decomposition. We then construct a vector for the energy contribution to represent the pattern of the ligand recognition at a receptor and qualitatively analyze the matching level with other receptors. Finally, the energy contribution vector is explored for extensive use in similarity and clustering. The present work provides a new approach to cluster proteins, a perspective counterpart for determining the protein characteristics in the binding, and an advanced screening technique where molecular docking is applicable.


Assuntos
Proteínas/química , Software , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/metabolismo
4.
Brief Bioinform ; 22(2): 882-895, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32715315

RESUMO

Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for medicines that can help before vaccines are available. In this study, we present a viral-associated disease-specific chemogenomics knowledgebase (Virus-CKB) and apply our computational systems pharmacology-target mapping to rapidly predict the FDA-approved drugs which can quickly progress into clinical trials to meet the urgent demand of the COVID-19 outbreak. Virus-CKB reuses the underlying platform of our DAKB-GPCRs but adds new features like multiple-compound support, multi-cavity protein support and customizable symbol display. Our one-stop computing platform describes the chemical molecules, genes and proteins involved in viral-associated diseases regulation. To date, Virus-CKB archived 65 antiviral drugs in the market, 107 viral-related targets with 189 available 3D crystal or cryo-EM structures and 2698 chemical agents reported for these target proteins. Moreover, Virus-CKB is implemented with web applications for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, NGL Viewer, Spider Plot, etc. The Virus-CKB server is accessible at https://www.cbligand.org/g/virus-ckb.


Assuntos
COVID-19/patologia , Biologia Computacional , Antivirais/farmacologia , COVID-19/virologia , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação
5.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876197

RESUMO

The design of therapeutic antibodies has attracted a large amount of attention over the years. Antibodies are widely used to treat many diseases due to their high efficiency and low risk of adverse events. However, the experimental methods of antibody design are time-consuming and expensive. Although computational antibody design techniques have had significant advances in the past years, there are still some challenges that need to be solved, such as the flexibility of antigen structure, the lack of antibody structural data and the absence of standard antibody design protocol. In the present work, we elaborated on an in silico antibody design protocol for users to easily perform computer-aided antibody design. First, the Rosetta web server will be applied to generate the 3D structure of query antibodies if there is no structural information available. Then, two-step docking will be used to identify the binding pose of an antibody-antigen complex when the binding information is unknown. ClusPro is the first method to be used to conduct the global docking, and SnugDock is applied for the local docking. Sequentially, based on the predicted binding poses, in silico alanine scanning will be used to predict the potential hotspots (or key residues). Finally, computational affinity maturation protocol will be used to modify the structure of antibodies to theoretically increase their affinity and stability, which will be further validated by the bioassays in the future. As a proof of concept, we redesigned antibody D44.1 and compared it with previously reported data in order to validate IsAb protocol. To further illustrate our proposed protocol, we used cemiplimab antibody, a PD-1 checkpoint inhibitor, as an example to showcase a step-by-step tutorial.


Assuntos
Anticorpos/química , Complexo Antígeno-Anticorpo/química , Biologia Computacional/métodos , Desenho Assistido por Computador , Simulação de Acoplamento Molecular , Domínios Proteicos , Animais , Anticorpos/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação de Anticorpos , Simulação por Computador , Cristalografia por Raios X , Humanos , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica
6.
Brief Bioinform ; 22(2): 946-962, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33078827

RESUMO

Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, or 2019-nCoV), there is an urgent need to identify therapeutics that are effective against COVID-19 before vaccines are available. Since the current rate of SARS-CoV-2 knowledge acquisition via traditional research methods is not sufficient to match the rapid spread of the virus, novel strategies of drug discovery for SARS-CoV-2 infection are required. Structure-based virtual screening for example relies primarily on docking scores and does not take the importance of key residues into consideration, which may lead to a significantly higher incidence rate of false-positive results. Our novel in silico approach, which overcomes these limitations, can be utilized to quickly evaluate FDA-approved drugs for repurposing and combination, as well as designing new chemical agents with therapeutic potential for COVID-19. As a result, anti-HIV or antiviral drugs (lopinavir, tenofovir disoproxil, fosamprenavir and ganciclovir), antiflu drugs (peramivir and zanamivir) and an anti-HCV drug (sofosbuvir) are predicted to bind to 3CLPro in SARS-CoV-2 with therapeutic potential for COVID-19 infection by our new protocol. In addition, we also propose three antidiabetic drugs (acarbose, glyburide and tolazamide) for the potential treatment of COVID-19. Finally, we apply our new virus chemogenomics knowledgebase platform with the integrated machine-learning computing algorithms to identify the potential drug combinations (e.g. remdesivir+chloroquine), which are congruent with ongoing clinical trials. In addition, another 10 compounds from CAS COVID-19 antiviral candidate compounds dataset are also suggested by Molecular Complex Characterizing System with potential treatment for COVID-19. Our work provides a novel strategy for the repurposing and combinations of drugs in the market and for prediction of chemical candidates with anti-COVID-19 potential.


Assuntos
Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Simulação de Acoplamento Molecular
7.
J Transl Med ; 20(1): 565, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474298

RESUMO

BACKGROUND: Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS: Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS: A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-ß1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION: These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.


Assuntos
Agonistas de Receptores de Canabinoides , Fibrose Pulmonar , Animais , Ratos , Fibrose Pulmonar/tratamento farmacológico , Receptores de Canabinoides
8.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056767

RESUMO

Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-ß-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future.


Assuntos
Sítio Alostérico , Sítios de Ligação , Moduladores de Receptores de Canabinoides/química , Desenho de Fármacos , Modelos Moleculares , Receptor CB2 de Canabinoide/química , Regulação Alostérica , Moduladores de Receptores de Canabinoides/farmacologia , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor CB2 de Canabinoide/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(12): E2716-E2724, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507222

RESUMO

The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid l-arginine (l-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Nt-arginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)-proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellular wastes to macroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.


Assuntos
Arginina/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas de Ligação a RNA/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína BRCA1/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Ubiquitina/metabolismo
10.
J Chem Inf Model ; 60(10): 4429-4435, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786694

RESUMO

A traditional single-target analgesic, though it may be highly selective and potent, may not be sufficient to mitigate pain. An alternative strategy for alleviation of pain is to seek simultaneous modulation at multiple nodes in the network of pain-signaling pathways through a multitarget analgesic or drug combinations. Here we present a comprehensive pain-domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated computing tools for target identification and systems pharmacology research. Pain-CKB is constructed on the basis of our established chemogenomics technology with new features, including multiple compound support, multicavity protein support, and customizable symbol display. The determination of bioactivity is also revised to avoid the use of complex machine learning models. Our one-stop computing platform describes the chemical molecules, genes, and proteins involved in pain regulation. To date, Pain-CKB has archived 272 analgesics in the market, 84 pain-related targets with 207 available 3D crystal or cryo-EM structures, and 234 662 chemical agents reported for these target proteins. Moreover, Pain-CKB implements user-friendly web-interfaced computing tools and applications for the prediction and analysis of the relevant protein targets and visualization of the outputs, including HTDocking, TargetHunter, BBB permeation predictor, NGL viewer, Spider Plot, etc. The Pain-CKB server is accessible at https://www.cbligand.org/g/pain-ckb.


Assuntos
Bases de Conhecimento , Proteínas , Humanos , Dor/tratamento farmacológico
11.
Mol Pharm ; 16(11): 4451-4460, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31589460

RESUMO

A deep convolutional generative adversarial network (dcGAN) model was developed in this study to screen and design target-specific novel compounds for cannabinoid receptors. In the adversarial process of training, two models, the discriminator D and the generator G, are iteratively trained. D is trained to discover the hidden patterns among the input data to have the accurate discrimination of the authentic compounds and the "fake" compounds generated by G; G is trained to generate "fake" compounds to fool the well-trained D by optimizing the weights for matrix multiplication of data sampling. In order to determine the appropriate architecture and the input data structure for the involved convolutional neural networks (CNNs), the combinations of various network architectures and molecular fingerprints were explored. Well-developed CNN models including LeNet-5, AlexNet, ZFNet, and VGGNet were investigated. Four types of fingerprints, including MACCS, ECFP6, AtomPair, and AtomPair Count, were calculated to describe the small molecules with diverse structural characteristics. The limitation of generating fingerprints as output remains that the concrete molecular structures cannot be converted directly, while the generative models with convolutional networks provide promising opportunities to the screening of molecules and rational modifications afterward. This study demonstrated how computer-aided drug discovery could benefit from the recent advances in deep learning.


Assuntos
Descoberta de Drogas/métodos , Receptores de Canabinoides/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
12.
Mol Pharm ; 16(6): 2605-2615, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31013097

RESUMO

Designing highly selective compounds to protein subtypes and developing allosteric modulators targeting them are critical considerations to both drug discovery and mechanism studies for cannabinoid receptors. It is challenging but in demand to have classifiers to identify active ligands from inactive or random compounds and distinguish allosteric modulators from orthosteric ligands. In this study, supervised machine learning classifiers were built for two subtypes of cannabinoid receptors, CB1 and CB2. Three types of features, including molecular descriptors, MACCS fingerprints, and ECFP6 fingerprints, were calculated to evaluate the compound sets from diverse aspects. Deep neural networks, as well as conventional machine learning algorithms including support vector machine, naïve Bayes, logistic regression, and ensemble learning, were applied. Their performances on the classification with different types of features were compared and discussed. According to the receiver operating characteristic curves and the calculated metrics, the advantages and drawbacks of each algorithm were investigated. The feature ranking was followed to help extract useful knowledge about critical molecular properties, substructural keys, and circular fingerprints. The extracted features will then facilitate the research on cannabinoid receptors by providing guidance on preferred properties for compound modification and novel scaffold design. Besides using conventional molecular docking studies for compound virtual screening, machine-learning-based decision-making models provide alternative options. This study can be of value to the application of machine learning in the area of drug discovery and compound development.


Assuntos
Aprendizado de Máquina , Receptores de Canabinoides/metabolismo , Algoritmos , Regulação Alostérica , Animais , Humanos , Máquina de Vetores de Suporte
13.
J Chem Inf Model ; 59(1): 53-65, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30563329

RESUMO

Although significant advances in experimental high throughput screening (HTS) have been made for drug lead identification, in silico virtual screening (VS) is indispensable owing to its unique advantage over experimental HTS, target-focused, cheap, and efficient, albeit its disadvantage of producing false positive hits. For both experimental HTS and VS, the quality of screening libraries is crucial and determines the outcome of those studies. In this paper, we first reviewed the recent progress on screening library construction. We realized the urgent need for compiling high-quality screening libraries in drug discovery. Then we compiled a set of screening libraries from about 20 million druglike ZINC molecules by running fingerprint-based similarity searches against known drug molecules. Lastly, the screening libraries were objectively evaluated using 5847 external actives covering more than 2000 drug targets. The result of the assessment is very encouraging. For example, with the Tanimoto coefficient being set to 0.75, 36% of external actives were retrieved and the enrichment factor was 13. Additionally, drug target family specific screening libraries were also constructed and evaluated. The druglike screening libraries are available for download from https://mulan.pharmacy.pitt.edu .


Assuntos
Simulação por Computador , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala
14.
J Chem Inf Model ; 59(4): 1283-1289, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30835466

RESUMO

Drug abuse (DA) or drug addiction is a complicated brain disorder which is commonly considered as neurobiological impairments caused by both genetic factors and environmental effects. Among DA-related targets, G protein-coupled receptors (GPCRs) play an important role in DA therapy. However, only 52 GPCRs have been published with crystal structures in the recent two decades. In the effort to overcome the limitations of crystal structure and conformational diversity of GPCRs, we built homology models and performed conformational searches by molecular dynamics (MD) simulation. To accelerate and facilitate the drug abuse research, we construct a DA-related GPCR-specific chemogenomics knowledgebase (KB) (DAKB-GPCRs) for its research that can be implemented with our established and novel chemogenomics tools as well as algorithms for data analysis and visualization. Our established TargetHunter and HTDocking tools, as well as our novel tools that include target classification and Spider Plot, are compiled into the platform. Our DAKB-GPCRs provides the following results for a query compound: (1) blood-brain barrier (BBB) plot via our BBB predictor, (2) docking scores via HTDocking, (3) similarity score via TargetHunter, (4) target classification via machine learning methods that utilize both docking scores and similarity scores, and (5) a drug-target interaction network via Spider Plot.


Assuntos
Biologia Computacional/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Bases de Conhecimento , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Conformação Proteica , Receptores Acoplados a Proteínas G/química
15.
J Comput Aided Mol Des ; 33(4): 447-459, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30840169

RESUMO

Tetrahydroberberrubine (TU), an active tetrahydroprotoberberines (THPBs), is gaining increasing popularity as a potential candidate for treatment of anxiety and depression. One of its two enantiomers, l-TU, has been reported to be an antagonist of both D1 and D2 receptors, but the functional activity of the other enantiomer, d-TU, is still unknown. In this study, experiments were combined with in silico molecular simulations to (1) confirm and discover the functional activities of l-TU and d-TU, and (2) systematically evaluate the molecular mechanisms beyond the experimental observations. l-TU proved to be an antagonist of both D1 and D2 receptors (IC50 = 385 nM and 985 nM, respectively), while d-TU shows no affinity against either D1 or D2 receptor, based on the cAMP assay (D1 receptor) and calcium flux assay (D2 receptor). Results from both flexible-ligand docking studies and molecular dynamic (MD) simulations provided insights at the atomic level. The l-TU-bound structures predicted by MD (1) undergo an outward rotation of the extracellular helical bundles; (2) have an enlarged orthosteric binding pocket; and (3) have a central toggle switch that is prevented from rotating freely. These features are unique to the l-TU enantiomer and provide an explanation for its antagonistic behavior toward both D1 and D2 receptors. The present study provides new sight on the structural and functional relationships of l-TU and d-TU binding to dopamine receptors, and provides guidance to the rational design of novel molecules targeting these two dopamine receptors in the future.


Assuntos
Berberina/análogos & derivados , Antagonistas dos Receptores de Dopamina D2/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Berberina/química , Berberina/farmacologia , Células CHO , Cricetulus , Desenho de Fármacos , Humanos , Ligantes , Simulação de Dinâmica Molecular , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Estereoisomerismo
16.
J Comput Aided Mol Des ; 33(1): 105-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218199

RESUMO

We participated in the Cathepsin S (CatS) sub-challenge of the Drug Design Data Resource (D3R) Grand Challenge 3 (GC3) in 2017 to blindly predict the binding poses of 24 CatS-bound ligands, the binding affinity ranking of 136 ligands, and the binding free energies of a subset of 33 ligands in Stage 1A and Stage 2. Our submitted predictions ranked relatively well compared to the submissions from other participants. Here we present our methodologies used in the challenge. For the binding pose prediction, we employed the Glide module in the Schrodinger Suite 2017 and AutoDock Vina. For the binding affinity/free energy prediction, we carried out molecular dynamics simulations of the complexes in explicit water solvent with counter ions, and then estimated the binding free energies with our newly developed model of extended linear interaction energy (ELIE), which is inspired by two other popular end-point approaches: the linear interaction energy (LIE) method, and the molecular mechanics with Poisson-Boltzmann surface area solvation method (MM/PBSA). Our studies suggest that ELIE is a good trade-off between efficiency and accuracy, and it is appropriate for filling the gap between the high-throughput docking and scoring methods and the rigorous but much more computationally demanding methods like free energy perturbation (FEP) or thermodynamics integration (TI) in computer-aided drug design (CADD) projects.


Assuntos
Catepsinas/química , Simulação de Acoplamento Molecular/métodos , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Desenho Assistido por Computador , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Solventes/química , Relação Estrutura-Atividade , Termodinâmica , Água/química
17.
Acta Pharmacol Sin ; 40(3): 374-386, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30202014

RESUMO

With treatment benefits in both the central nervous system and the peripheral system, the medical use of cannabidiol (CBD) has gained increasing popularity. Given that the therapeutic mechanisms of CBD are still vague, the systematic identification of its potential targets, signaling pathways, and their associations with corresponding diseases is of great interest for researchers. In the present work, chemogenomics-knowledgebase systems pharmacology analysis was applied for systematic network studies to generate CBD-target, target-pathway, and target-disease networks by combining both the results from the in silico analysis and the reported experimental validations. Based on the network analysis, three human neuro-related rhodopsin-like GPCRs, i.e., 5-hydroxytryptamine receptor 1 A (5HT1A), delta-type opioid receptor (OPRD) and G protein-coupled receptor 55 (GPR55), were selected for close evaluation. Integrated computational methodologies, including homology modeling, molecular docking, and molecular dynamics simulation, were used to evaluate the protein-CBD binding modes. A CBD-preferred pocket consisting of a hydrophobic cavity and backbone hinges was proposed and tested for CBD-class A GPCR binding. Finally, the neurophysiological effects of CBD were illustrated at the molecular level, and dopamine receptor 3 (DRD3) was further predicted to be an active target for CBD.


Assuntos
Canabidiol/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides delta/metabolismo , Algoritmos , Canabidiol/química , Bases de Dados de Compostos Químicos , Humanos , Ligação de Hidrogênio , Bases de Conhecimento , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia/métodos , Ligação Proteica , Receptores de Canabinoides , Receptores de Dopamina D3/química , Receptores Acoplados a Proteínas G/química , Receptores Opioides delta/química , Homologia de Sequência de Aminoácidos
18.
Acta Pharmacol Sin ; 40(9): 1138-1156, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30814658

RESUMO

Serotonin (5-HT) receptors are proteins involved in various neurological and biological processes, such as aggression, anxiety, appetite, cognition, learning, memory, mood, sleep, and thermoregulation. They are commonly associated with drug abuse and addiction due to their importance as targets for various pharmaceutical and recreational drugs. However, due to a high sequence similarity/identity among 5-HT receptors and the unavailability of the 3D structure of the different 5-HT receptor, no report was available so far regarding the systematical comparison of the key and selective residues involved in the binding pocket, making it difficult to design subtype-selective serotonergic drugs. In this work, we first built and validated three-dimensional models for all 5-HT receptors based on the existing crystal structures of 5-HT1B, 5-HT2B, and 5-HT2C. Then, we performed molecular docking studies between 5-HT receptors agonists/inhibitors and our 3D models. The results from docking were consistent with the known binding affinities of each model. Sequentially, we compared the binding pose and selective residues among 5-HT receptors. Our results showed that the affinity variation could be potentially attributed to the selective residues located in the binding pockets. Moreover, we performed MD simulations for 12 5-HT receptors complexed with ligands; the results were consistent with our docking results and the reported data. Finally, we carried out off-target prediction and blood-brain barrier (BBB) prediction for Captagon using our established hallucinogen-related chemogenomics knowledgebase and in-house computational tools, with the hope to provide more information regarding the use of Captagon. We showed that 5-HT2C, 5-HT5A, and 5-HT7 were the most promising targets for Captagon before metabolism. Overall, our findings can provide insights into future drug discovery and design of medications with high specificity to the individual 5-HT receptor to decrease the risk of addiction and prevent drug abuse.


Assuntos
Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia/métodos , Receptores de Serotonina/química , Antagonistas da Serotonina/química , Agonistas do Receptor de Serotonina/química
19.
Molecules ; 24(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640203

RESUMO

The blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a critical role in cancer immunotherapy by reducing the immune escape. Five monoclonal antibodies that antagonized PD-1/PD-L1 interaction have been approved by the Food and Drug Administration (FDA) and marketed as immunotherapy for cancer treatment. However, some weaknesses of antibodies, such as high cost, low stability, poor amenability for oral administration, and immunogenicity, should not be overlooked. To overcome these disadvantages, small-molecule inhibitors targeting PD-L1 were developed. In the present work, we applied in silico and in vitro approaches to develop short peptides targeting PD-1 as chemical probes for the inhibition of PD-1-PD-L1 interaction. We first predicted the potential binding pocket on PD-1/PD-L1 protein-protein interface (PPI). Sequentially, we carried out virtual screening against our in-house peptide library to identify potential ligands. WANG-003, WANG-004, and WANG-005, three of our in-house peptides, were predicted to bind to PD-1 with promising docking scores. Next, we conducted molecular docking and molecular dynamics (MD) simulation for the further analysis of interactions between our peptides and PD-1. Finally, we evaluated the affinity between peptides and PD-1 by surface plasmon resonance (SPR) binding technology. The present study provides a new perspective for the development of PD-1 inhibitors that disrupt PD-1-PD-L1 interactions. These promising peptides have the potential to be utilized as a novel chemical probe for further studies, as well as providing a foundation for further designs of potent small-molecule inhibitors targeting PD-1.


Assuntos
Receptor de Morte Celular Programada 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Simulação por Computador , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Receptor de Morte Celular Programada 1/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ressonância de Plasmônio de Superfície
20.
Kidney Int ; 94(4): 756-772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093080

RESUMO

The cannabinoid receptor type 2 (CB2) is a G protein-coupled seven transmembrane receptor that transmits endogenous cannabinoid signaling. The role of CB2 in the pathogenesis of kidney injury and fibrosis remains poorly understood. Here we demonstrate that CB2 was induced, predominantly in kidney tubular epithelium, in various models of kidney disease induced by unilateral ureteral obstruction, adriamycin or ischemia/reperfusion injury. In vitro, forced expression of CB2 or treatment with a CB2 agonist was sufficient to trigger matrix gene expression, whereas knockdown of CB2 by siRNA abolished transforming growth factor-ß1-induced signaling and fibrogenic responses in kidney tubular cells. CB2 also mediated fibroblasts and macrophage activation in vitro. Mice with genetic ablation of CB2 were protected against kidney injury after ureteral obstruction, validating a pathogenic role of CB2 in renal fibrosis in vivo. By using in silico screening and medicinal chemistry modifications, we discovered a novel compound, XL-001, that bound to CB2 with high affinity and selectivity and acted as an inverse agonist. Incubation with XL-001 inhibited in a dose-dependent fashion the fibrogenic response induced by CB2 overexpression, CB2 agonist or transforming growth factor-ß1. In vivo, intraperitoneal injections of XL-001 ameliorated kidney injury, fibrosis and inflammation in both the obstruction and ischemia/reperfusion models. Delayed administration of XL-001 was also effective in ameliorating kidney fibrosis and inflammation. Thus, CB2 is a pathogenic mediator in kidney fibrosis and targeted inhibition with the novel inverse agonist XL-001 may provide a strategy in the fight against fibrotic kidney diseases.


Assuntos
Túbulos Renais/metabolismo , Túbulos Renais/patologia , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Insuficiência Renal Crônica/genética , Sulfonamidas/farmacologia , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Epitélio , Matriz Extracelular/genética , Fibroblastos , Fibrose , Expressão Gênica , Inativação Gênica , Inflamação/etiologia , Inflamação/prevenção & controle , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor CB2 de Canabinoide/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/prevenção & controle , Traumatismo por Reperfusão/complicações , Transdução de Sinais , Sulfonamidas/química , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA