RESUMO
Thermal quenching (TQ) has been naturally entangling with luminescence since its discovery, and lattice vibration, which is characterized as multiphonon relaxation (MPR), plays a critical role. Considering that MPR may be suppressed under exterior pressure, we have designed a core/shell upconversion luminescence (UCL) system of α-NaYF4:Yb/Ln@ScF3 (Ln = Ho, Er, and Tm) with positive/negative thermal expansion behavior so that positive thermal expansion of the core will be restrained by negative thermal expansion of the shell when heated. This imposed pressure on the crystal lattice of the core suppresses MPR, reduces the amount of energy depleted by TQ, and eventually saves more energy for luminescing, so that anti-TQ or even thermally enhanced UCL is obtained.
RESUMO
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Transferência de EnergiaRESUMO
The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.
RESUMO
Force fields (FFs) form the basis of molecular simulations and have significant implications in diverse fields such as materials science, chemistry, physics, and biology. A suitable FF is required to accurately describe system properties. However, an off-the-shelf FF may not be suitable for certain specialized systems, and researchers often need to tailor the FF that fits specific requirements. Before applying machine learning (ML) techniques to construct FFs, the mainstream FFs were primarily based on first-principles force fields (FPFF) and empirical FFs. However, the drawbacks of FPFF and empirical FFs are high cost and low accuracy, respectively, so there is a growing interest in using ML as an effective and precise tool for reconciling this trade-off in developing FFs. In this review, we introduce the fundamental principles of ML and FFs in the context of machine learning force fields (MLFF). We also discuss the advantages and applications of MLFF compared to traditional FFs, as well as the MLFF toolkits widely employed in numerous applications.
Assuntos
Aprendizado de Máquina , FísicaRESUMO
Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2 (WO4 )3 :Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2 (WO4 )3 :Yb/Er, which has set a record of both the Yb3+ -Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073â K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.
RESUMO
2D materials, namely thin layers of layered materials, are attracting much attention because of their unique electronic, optical, thermal, and catalytic properties for wide applications. To advance both the fundamental studies and further practical applications, the scalable and controlled synthesis of large-sized 2D materials is desired, while there still lacks ideal approaches. Alternatively, the chemical vapor transport reaction is an old but powerful technique, and is recently adopted for synthesizing 2D materials, producing bulk crystals of layered materials or corresponding 2D films. Herein, recent advancements in synthesizing both bulk layered and 2D materials by chemical vapor transport reactions are summarized. Beginning with a brief introduction of the fundamentals of chemical vapor transport reactions, chemical vapor transport-based syntheses of bulk layered and 2D materials, mainly exampled by transition metal dichalcogenides and black phosphorus, are reviewed. Particular attention is paid to important factors that can influence the reactions and the growth mechanisms of black phosphorus. Finally, perspectives about the chemical vapor transport-based synthesis of 2D materials are discussed, intending to redraw attentions on chemical vapor transport reactions.
RESUMO
The combination of metal-organic frameworks (MOFs) and luminescent nanomaterials with upconversion characteristics could enable the development of new nanomaterials and applications in information security, optical sensing, and theranostics. However, currently available methods are not ideally suitable for fabricating composites of MOF and upconversion nanomaterial, and incorporating upconversion nanomaterials with MOFs in a controllable manner remains challenging. Here, we demonstrate an in situ self-assembly route to the nanocomposites in which MOFs are homogeneously paved with upconversion nanoparticles. Without additional assistance, this strategy, mainly driven by electrostatic interactions, can be used to incorporate different upconversion nanoparticles with diverse MOFs. The as-synthesized composites can be further used to construct composites with unique structures, such as MOF@upconversion nanoparticles@MOF sandwiched nanocomposites, and would be useful for applications including luminescence-monitored drug delivery, anticounterfeiting, and photodynamic therapy. These findings should shed light on new avenues for fabricating multifunctional composites of MOF and upconversion nanomaterials for varied applications.
RESUMO
Investigating the change in expression level of mercapto biomolecules (GSH/Cys/Hcy) necessitates a rapid detection method for a series of physiological and pathological processes. Herein, we present a ligand-displacement-based two-photon fluorogenic probe based on an Fe(iii) complex, TPFeS, which is a GSH/Cys/Hcy rapid detection fluorogenic probe for in vitro analysis and live cell/tissue/in vivo imaging. The "in situ" probe is non-fluorescent and was prepared from a 1 : 2 ratio of Fe(iii) and TPS, a novel two-photon (TP) fluorophore with excellent one-photon (OP) and TP properties under physiological conditions, as a fluorescent ligand. This probe shows a rapid and remarkable fluorescence restoration (OFF-ON) property due to the ligand-displacement reaction of mercapto biomolecules in a recyclable manner in vitro. A significant two-photon action cross-section, good selectivity for biothiols, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range allowed the direct visualization of mercapto biomolecules at different levels between normal/drug-treated live cells, as well as in Drosophila brain tissues/zebrafish based on the use of two-photon fluorescence microscopy.
Assuntos
Química Encefálica , Compostos Férricos , Corantes Fluorescentes , Compostos de Sulfidrila/análise , Animais , Encéfalo , Drosophila , Fótons , Peixe-ZebraRESUMO
Lanthanide-doped upconversion nanoparticles can tune near-infrared light to visible or even ultra-violet light in emissions. Due to their unique photophysical and photochemical properties, as well as their promising bioapplications, there has been a great deal of enthusiastic research performed to study the properties of lanthanide-doped upconversion nanoparticles in the past few years. Despite the considerable progress in this area, numerous challenges associated with the nanoparticles, such as a low upconversion efficiency, limited host materials, and a confined excitation wavelength, still remain, thus hindering further development with respect to their applications and in fundamental science. Recently, innovative strategies that utilize alternative sensitizers have been designed in order to engineer the excitation wavelengths of upconversion nanoparticles. Here, focusing on the excitation wavelength at ≈800 nm, recent advances in the design, property tuning, and applications of ≈800 nm excited upconversion nanoparticles are summarized. Benefiting from the unique features of ≈800 nm light, including deep tissue penetration depth and low photothermal effect, the ≈800 nm excited upconversion nanoparticles exhibit superior potential for biosensing, bioimaging, drug delivery, therapy, and three dimensional displays. The critical aspects of such emerging nanoparticles with regards to meeting the ever-changing needs of future development are also discussed.
Assuntos
Elementos da Série dos Lantanídeos/química , Luz , Nanopartículas/química , Animais , Corantes/química , Humanos , Imageamento TridimensionalRESUMO
Many methods have been reported for synthesizing graphene oxide (GO) and graphene oxide quantum dots (GOQDs) where a tedious operational procedure and long reaction time are generally required. Herein, a facile one-pot solvothermal method that allows selective synthesis of pure GO and pure GOQDs, respectively is demonstrated. What is more, the final product of either GO or differently sized GOQDs can be easily controlled by adjusting the reaction temperatures or reactant ratios, which is also feasible when enlarged to gram scale. The 2.5 nm GOQDs show excellent photoluminescence that can be utilized for bioimaging or distinctive detection of Eu3+ and Tb3+ from their respective mixtures with other rare earth and/or transition metal ions, at sub-ppm level.
RESUMO
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5â mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.
RESUMO
A crystal design strategy is described that generates hexagonal-phased NaYF4 :Nd/Yb@NaYF4 :Yb/Tm luminescent nanocrystals with the ability to emit light at 803â nm when illuminated at 745â nm. This is accomplished by taking advantage of the large absorption cross-section of Nd(3+) between 720 and 760â nm plus efficient spatial energy transfer and migration through Nd(3+) âYb(3+) âYb(3+) âTm(3+) . Mechanistic investigations suggest that a cascaded two-photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep-tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980â nm excitation.
Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/químicaRESUMO
Growing interest in lanthanide-doped nanoparticles for biological and medical uses has brought particular attention to their safety concerns. However, the intrinsic toxicity of this new class of optical nanomaterials in biological systems has not been fully evaluated. In this work, we systematically evaluate the long-term cytotoxicity of lanthanide-doped nanoparticles (NaGdF4 and NaYF4) to HeLa cells by monitoring cell viability (mitochondrial activity), adenosine triphosphate (ATP) level, and cell membrane integrity (lactate dehydrogenase release), respectively. Importantly, we find that ligand-free lanthanide-doped nanoparticles induce intracellular ATP deprivation of HeLa cells, resulting in a significant decrease in cell viability after exposure for 7 days. We attribute the particle-induced cell death to two distinct cell death pathways, autophagy and apoptosis, which are primarily mediated via the interaction between the nanoparticle and the phosphate group of cellular ATP. The understanding gained from the investigation of cytotoxicity associated with lanthanide-doped nanoparticles provides keen insights into the safe use of these nanoparticles in biological systems.
Assuntos
Trifosfato de Adenosina/metabolismo , Elementos da Série dos Lantanídeos/farmacologia , Nanopartículas Metálicas/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Elementos da Série dos Lantanídeos/química , Relação Estrutura-AtividadeRESUMO
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through YbâTmâGdâMn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532â µs in the emission of Gd(3+) at 310â nm ((6)P(7/2)â(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer.
RESUMO
The enthusiasm for research on lanthanide-doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.
Assuntos
Elementos da Série dos Lantanídeos/efeitos adversos , Luminescência , Nanopartículas/metabolismo , Humanos , Elementos da Série dos Lantanídeos/análise , Modelos MolecularesRESUMO
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
RESUMO
The development of high-performance metal-free organic X-ray scintillators (OXSTs), characterized by a synergistic combination of robust X-ray absorption, efficient exciton utilization, and short luminescence lifetimes, poses a considerable challenge. Here we present an effective strategy for achieving augmented X-ray scintillation through the utilization of halogenated open-shell organic radical scintillators. Our experimental results demonstrate that the synthesized scintillators exhibit strong X-ray absorption derived from halogen atoms, display efficacious X-ray stability, and theoretically achieve 100% exciton utilization efficiency with a short lifetime (â¼18 ns) due to spin-allowed doublet transitions. The superior X-ray scintillation performance exhibited by these organic radicals is not only exploitable in X-ray radiography for contrast imaging of various objects but also applicable in a medical high-resolution micro-computer-tomography system for the clear visualization of fibrous veins within a bamboo stick. Our study substantiates the promise of organic radicals as prospective candidates for OXSTs, offering valuable insights and a roadmap for the development of advanced organic radical scintillators geared towards achieving high-quality X-ray radiography.
RESUMO
A new type of core-shell upconversion nanoparticles which can be effectively excited at 795 nm has been designed and synthesized through spatially confined doping of neodymium (Nd(3+)) ions. The use of Nd(3+) ions as sensitizers facilitates the energy transfer and photon upconversion of a series of lanthanide activators (Er(3+), Tm(3+), and Ho(3+)) at a biocompatible excitation wavelength (795 nm) and also significantly minimizes the overheating problem associated with conventional 980 nm excitation. Importantly, the core-shell design enabled high-concentration doping of Nd(3+) (~0 mol %) in the shell layer and thus markedly enhanced the upconversion emission from the activators, providing highly attractive luminescent biomarkers for bioimaging without autofluorescence and concern of overheating.
RESUMO
The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics and function with high specificity, offering substantial advantages in both sensitivity and specificity over conventional detection methods. The screening of nuclease, methyltransferase, protease, and kinase activities can be colorimetrically performed in a straightforward manner. Finally, we discuss examples of colorimetric assays for metal ions and small molecules that constitute important advances toward visual monitoring of enzyme catalytic functions and gene expression. Although these enzyme-assisted assay methods hold great promise for myriad applications in biomedicine and bioimaging, the application of the described techniques in vivo faces formidable challenges. In addition, researchers do not fully understand the interactions of gold nanoparticles with enzyme molecules. This understanding will require the development of new techniques to probe enzyme substrate dynamics at the particle interface with higher spatial resolution and chemical specificity.
Assuntos
Enzimas/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Colorimetria , Ouro/metabolismoRESUMO
Lanthanide-doped upconversion nanoparticle (UCNP)-based nanocomposites can address the intrinsic limitations associated with UCNPs and bestow new functions on UCNPs, which can facilitate the development and application of UCNPs. However, the fabrication of UCNP-based composites typically suffers from complex operations, long-drawn-out procedures, and even loss or damage of UCNPs. Herein, we report a tandem fabrication strategy for the preparation of UCNP-based nanocomposites, in which protons, confined in the non-aqueous polar solvent, can produce ligand-free UCNPs for the direct fabrication of a composite without further treatment. Our studies show that the confined protons can be generated by diverse materials and can yield different types of ligand-free nanomaterials for desired composites. This versatile strategy enables a simple but scalable fabrication of UCNP-based nanocomposites, and can be extended to other nanomaterial-based composites. These findings should provide a platform for constructing multifunctional UCNP-based materials, and benefit potential applications of UCNPs in varied fields.