Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Exp Dermatol ; 32(2): 135-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251463

RESUMO

Psoriasis is a chronic recurrent inflammatory skin disease that is characterized by abnormal proliferation and differentiation of keratinocytes (KCs), angiogenesis and skin inflammation. Transfer RNA fragments (tRFs) are tRNA-derived small RNAs (tsRNAs), which possess regulatory functions in many diseases. Their potential roles in the pathological development of psoriasis have not been established. We first identified differentially expressed (DE) tRFs from psoriatic skin lesions using small RNA sequencing, and collected additional clinical samples for validation. Then, we investigated the function and mechanism of target tRFs in vitro. As a result of our investigation: we identified 234 DE transcripts in psoriatic skin lesions compared with normal controls. Further functional analysis showed the downregulation of tRF-Ile-AAT-019 in psoriatic lesions plays a critical role in pathogenesis since it could target 3'UTR of the serine protease serpin protein E1 (SERPINE1) gene. We next demonstrated that tRF-Ile-AAT-019 could suppress SERPINE1, thus leading to decreased expressions of vascular endothelial growth factor but increased expressions of keratinocytes (KCs) differentiation markers including Keratin1 and Involucrin. In conclusion, tRF-Ile-AAT-019 plays a protective role in the pathological progression of psoriasis via targeting SERPINE1, resulting in regulation of KCs differentiation and vascular proliferation biomarkers and providing a potential novel targeting pathway for the disease treatment.


Assuntos
Psoríase , RNA , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Regulação para Baixo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36935172

RESUMO

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Assuntos
Dermatite Alérgica de Contato , Dermatite Atópica , Animais , Camundongos , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/metabolismo , Dermatite Alérgica de Contato/patologia , Dermatite Atópica/induzido quimicamente , Transdução de Sinais , RNA Mensageiro/metabolismo , Camundongos Endogâmicos BALB C
3.
Biomacromolecules ; 23(1): 291-302, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34874163

RESUMO

In this study, a double-modified bacterial cellulose/soybean protein isolate (DMBC/SPI), a new type of urethral tissue engineering scaffold with good biocompatibility, biodegradability, and cell-oriented growth, was prepared. Bacterial cellulose (BC) was physically and chemically modified by laser hole forming and selective oxidation to obtain the double-modified bacterial cellulose (DMBC). The soybean protein isolate (SPI) was compounded on DMBC to obtain DMBC/SPI with better biocompatibility. DMBC/SPI was used to repair the damaged urethra in rabbits. The results showed that DMBC/SPI was beneficial to heal the damaged urethra and did not cause a milder inflammatory response. The repaired urethra was smooth and continuous. DMBC/SPI has a good urethral repair effect and is expected to be used as a new urethral reconstruction material in clinical applications. In addition, FT-IR spectroscopy, SEM, static contact angle measurements, mechanical property investigation, and cell experiments were also performed to characterize the properties of DMBC/SPI composites.


Assuntos
Proteínas de Soja , Engenharia Tecidual , Uretra , Animais , Celulose/química , Lasers , Masculino , Coelhos , Proteínas de Soja/química , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
4.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144696

RESUMO

Metal sulfide electrocatalyst is developed as a cost-effective and promising candidate for hydrogen evolution reaction (HER). In this work, we report a novel Mo-doped Cu2S self-supported electrocatalyst grown in situ on three-dimensional copper foam via a facile sulfurization treatment method. Interestingly, Mo-Cu2S nanosheet structure increases the electrochemically active area, and the large fleecy multilayer flower structure assembled by small nanosheet facilitates the flow of electrolyte in and out. More broadly, the introduction of Mo can adjust the electronic structure, significantly increase the volmer step rate, and accelerate the reaction kinetics. As compared to the pure Cu2S self-supported electrocatalyst, the Mo-Cu2S/CF show much better alkaline HER performance with lower overpotential (18 mV at 10 mA cm-2, 322 mV at 100 mA cm-2) and long-term durability. Our work constructs a novel copper based in-situ metal sulfide electrocatalysts and provides a new idea to adjust the morphology and electronic structure by doping for promoting HER performance.

5.
Beilstein J Org Chem ; 13: 1866-1870, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062405

RESUMO

An efficient base-catalyzed protocol for the synthesis of benzothiophene is described. The reaction proceeds via base-promoted propargyl-allenyl rearrangement followed by cyclization and allyl migration. Phosphine-substituted indoles can be synthesized by a similar strategy.

6.
Bioact Mater ; 39: 147-162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808158

RESUMO

Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.

7.
Comput Methods Biomech Biomed Engin ; 27(11): 1552-1562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899984

RESUMO

The meniscus plays a crucial role in the proper functioning of the knee joint, and when it becomes damaged, partial removal or replacement is necessary to restore proper function. Understanding the stress and deformation of the meniscus during various movements is essential for developing effective materials for meniscus repair. However, accurately estimating the contact mechanics of the knee joint can be challenging due to its complex shape and the dynamic changes it undergoes during movement. To address this issue, the open-source software SCONE can be used to establish a kinematics model that monitors the different states of the knee joint during human motion and obtains relevant gait kinematics data. To evaluate the stress and deformation of the meniscus during normal human movement, values of different states in the movement gait can be selected for finite element analysis (FEA) of the knee joint. This analysis enables researchers to assess changes in the meniscus. To evaluate meniscus damage, it is necessary to obtain changes in its mechanical behavior during abnormal movements. This information can serve as a reference for designing and optimizing the mechanical performance of materials used in meniscus repair and replacement.


Assuntos
Análise de Elementos Finitos , Marcha , Humanos , Marcha/fisiologia , Fenômenos Biomecânicos , Menisco/fisiologia , Menisco/fisiopatologia , Articulação do Joelho/fisiologia , Simulação por Computador , Meniscos Tibiais/fisiologia , Meniscos Tibiais/fisiopatologia , Modelos Biológicos
8.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880455

RESUMO

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Assuntos
Celulose , Animais , Celulose/química , Celulose/farmacologia , Ratos , Aderências Teciduais/prevenção & controle , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Parede Abdominal/cirurgia , Parede Abdominal/patologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Propriedades de Superfície , Hérnia Abdominal/prevenção & controle , Telas Cirúrgicas , Ratos Sprague-Dawley
9.
Bioact Mater ; 39: 1-13, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38783924

RESUMO

Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.

10.
ACS Appl Mater Interfaces ; 16(30): 38852-38879, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041365

RESUMO

Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.


Assuntos
Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Eletricidade , Engenharia Tecidual
11.
Mater Today Bio ; 26: 101042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660473

RESUMO

High oxidative stress and inflammatory cell infiltration are major causes of the persistent bone erosion and difficult tissue regeneration in rheumatoid arthritis (RA). Triptolide (TPL) has become a highly anticipated anti-rheumatic drug due to its excellent immunomodulatory and anti-inflammatory effects. However, the sudden drug accumulation caused by the binding of "stimulus-response" and "drug release" in a general smart delivery system is difficult to meet the shortcoming of extreme toxicity and the demand for long-term administration of TPL. Herein, we developed a dual dynamically cross-linked hydrogel (SPT@TPL), which demonstrated sensitive RA microenvironment regulation and microenvironment modulation-independent TPL release for 30 days. The abundant borate ester/tea polyphenol units in SPT@TPL possessed the capability to respond and regulate high reactive oxygen species (ROS) levels on-demand. Meanwhile, based on its dense dual crosslinked structure as well as the spontaneous healing behavior of numerous intermolecular hydrogen bonds formed after the breakage of borate ester, TPL could remain stable and slowly release under high ROS environments of RA, which dramatically reduced the risk of TPL exerting toxicity while maximized its long-term efficacy. Through the dual effects of ROS regulation and TPL sustained-release, SPT@TPL alleviated oxidative stress and reprogrammed macrophages into M2 phenotype, showing marked inhibition of inflammation and optimal regeneration of articular cartilage in RA rat model. In conclusion, this hydrogel platform with both microenvironment initiative regulation and TPL long-term sustained release provides a potential scheme for rheumatoid arthritis.

12.
ACS Appl Mater Interfaces ; 15(37): 43591-43606, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681687

RESUMO

In the context of long-term antimicrobial treatment, the emergence of bacterial resistance poses a significant challenge. Therefore, there is a pressing need to develop novel antimicrobial materials and methods that can effectively and safely combat microbial infections. This study focuses on the synthesis of bacterial cellulose-polymethylene blue (BC-PMB) with integrated photodynamic and photoelectric antimicrobial properties. The polymerization of methyl blue (MB) onto bacterial celluloses (BC) was achieved, and through comprehensive computational analyses using density functional theory (DFT) and molecular dynamics simulations, it was confirmed that this polymerization greatly enhanced the binding efficiency between methylene blue and BC. Additionally, polymethylene blue (PMB) exhibited superior photoexcitation efficiency and conductivity compared to its precursor. When BC-PMB was exposed to a 30 mW 660 nm light source for 30 min, the material demonstrated a remarkable antimicrobial efficacy of 93.99% against Escherichia coli and 98.58% against Staphylococcus aureus. Furthermore, the synergistic effect of photodynamic and photoelectric antimicrobial mechanisms exhibited long-term inhibitory capabilities against bacterial biofilms.


Assuntos
Biofilmes , Azul de Metileno , Azul de Metileno/farmacologia , Polimerização , Agregação Celular , Celulose/farmacologia , Escherichia coli
13.
Carbohydr Polym ; 314: 120906, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173043

RESUMO

Bacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation. In this paper, the controllable degradation of BC was realized for the first time by using a new controlled release structure that combines the immobilization and release of cellulase. The immobilized enzyme has higher stability and is gradually released in the simulated physiological environment, and its load can control the hydrolysis rate of BC well. Furthermore, the BC-based membrane prepared by this method retains the favorable physicochemical performance of the original BC, including flexibility and great biocompatibility, and holds good application prospects in drug control release or tissue repair.


Assuntos
Celulase , Celulose , Celulose/química , Celulase/química , Enzimas Imobilizadas/química , Materiais Biocompatíveis , Cicatrização
14.
Mater Today Bio ; 20: 100665, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229214

RESUMO

Electret materials have attracted extensive attention because of their permanent polarization and electrostatic effect. However, it is one of problem that needs to be solved in biological application to manipulate the change of surface charge of electret by external stimulation. In this work, a drug-loaded electret with flexibility and no cytotoxicity was prepared under relatively mild conditions. The electret can release the charge through stress change and ultrasonic stimulation, and the drug release can be accurately controlled with the help of ultrasonic and electric double stimulation response. Here, the dipoles like particles of carnauba wax nanoparticles (nCW) are fixed in the matrix based on the interpenetrating polymer network structure, and "frozen" oriented dipolar particles that are treated by thermal polarization and cooled at high field strength. Subsequently, the charge density of the prepared composite electret can reach 101.1 â€‹nC/m2 at the initial stage of polarization and 21.1 â€‹nC/m2 after 3 weeks. In addition, the stimulated change of electret surface charge flow under cyclic tensile stress and cyclic compressive stress can generate a current of 0.187 â€‹nA and 0.105 â€‹nA at most. The ultrasonic stimulation results show that when the ultrasonic emission power was 90% (Pmax â€‹= â€‹1200 â€‹W), the current of 0.472 â€‹nA can be generated. Finally, the drug release characteristics and biocompatibility of the nCW composite electret containing curcumin were tested. The results showed that it not only had the ability to accurately control the release by ultrasound, but also triggered the electrical effect of the material. The prepared drug loaded composite bioelectret provides a new way for the construction, design and testing of the bioelectret. Its ultrasonic and electrical double stimulation response can be accurately controlled and released as required, and it has broad application prospects.

15.
ACS Nano ; 17(7): 6373-6386, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36961738

RESUMO

Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Ratos , Animais , Ratos Sprague-Dawley , Alicerces Teciduais , Engenharia Tecidual/métodos , Proliferação de Células , Fenômenos Magnéticos , Células Cultivadas
16.
Biomater Adv ; 154: 213642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776571

RESUMO

Natural polymers and minerals can be combined to simulate natural bone for repairing bone defects. However, bone defects are often irregular and pose challenges for their repair. To overcome these challenges, we prepared Chitosan/Polydopamine/Octacalcium phosphate (CS/PDA/OCP) microcarriers that mimic bone composition and micro-size to adapt to different bone defect defects. CS/PDA microspheres were prepared by emulsion phase separation method and PDA in-situ polymerization. Finally, it was used to adsorb and immobilize OCP particles, resulting in the preparation of CS/PDA/OCP composite microcarriers. The microcarriers maintain an interconnected porous structure and appropriate porosity, which promotes cell adhesion, proliferation, and nutrient exchange. Subsequently, the protein adsorption capacity, simulated degradation, cell adhesion and proliferation capacity of the composite microcarriers were investigated. Additionally, their ability to simulate mineralization and induce osteogenic differentiation of BMSCs was characterized. The results demonstrated that the composite microcarrier had good biocompatibility and was conducive to cell adhesion and proliferation. Moreover, ALP and ARS staining revealed that the addition of OCP significantly enhanced the osteogenic differentiation of BMSCs. These results indicate that the composite microcarrier has promising prospects for bone repair applications.


Assuntos
Quitosana , Osteogênese , Quitosana/farmacologia , Quitosana/química , Polímeros/farmacologia , Células-Tronco , Diferenciação Celular
17.
Int J Biol Macromol ; 236: 123943, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889621

RESUMO

The disadvantages of mainstream therapies for endometrial injury are difficult to resolve, herein, we suggest an omnibearing improvement strategy by introducing an injectable multifunctional self-assembled dual-crosslinked sodium alginate/recombinant collagen hydrogel. The hydrogel possessed a reversible and dynamic double network based on dynamic covalent bonds and ionic interactions, which also contributed to excellent capability in viscosity and injectability. Moreover, it was also biodegradable with a suitable speed, giving off active ingredients during the degradation process and eventually disappearing completely. In vitro tests exhibited that the hydrogel was biocompatible and able to enhance endometrial stromal cells viability. These features synergistically promoted cell multiplication and maintenance of endometrial hormone homeostasis, which accelerated endometrial matrix regeneration and structural reconstruction after severe injury in vivo. Furthermore, we explored the interrelation between the hydrogel characteristics, endometrial structure, and postoperative uterine recovery, which would benefit deep research on regulation of uterine repair mechanism and optimization of hydrogel materials. The injectable hydrogel could achieve favourable therapeutic efficacy without the need of exogenous hormones or cells, which would be of clinical value in endometrium regeneration.


Assuntos
Alginatos , Hidrogéis , Feminino , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Alginatos/química , Endométrio , Colágeno , Útero
18.
Anal Bioanal Chem ; 404(10): 3189-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23052880

RESUMO

Near infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool in different fields. However, because of the low sensitivity in near infrared region, it is a significant challenge to detect trace analytes with normal NIRS technique. A novel enrichment technique called fluidized bed enrichment has been developed recently to improve sensitivity of NIRS which allows a large volume solution to pass through within a short time. In this paper, fluidized bed enrichment method was applied in the determination of trace dimethyl fumarate in milk. Macroporous styrene resin HZ-816 was used as adsorbent material, and 1 L solution of dimethyl fumarate was run to pass through the material for concentration. The milk sample was pretreated to remove interference matters such as protein, fat, and then passed through the material for enrichment; after that, diffuse reflection NIR spectra were measured for the analyte concentrated on the material directly without any elution process. The enrichment and spectral measurement procedures were easy to operate. NIR spectra in 900-1,700 nm were collected for dimethyl fumarate solutions in the concentration range of 0.506-5.060 µg/mL and then used for multivariate calibration with partial least squares (PLS) regression. Spectral pretreatment methods such as multiplicative scatter correction, first derivative, second derivative, and their combinations were carried out to select the optimal PLS model. Root mean square error of cross-validation calculated by leave-one-out cross-validation is 0.430 µg/mL with ten PLS factors. Ten samples in an independent test set were predicted by the model with the mean relative error of 5.33%. From the results shown in this work, it can be concluded that the NIR technique coupled with on-line enrichment method can be expanded for the determination of trace analytes, and its applications in real liquid samples like milk and juice may also be feasible.


Assuntos
Fracionamento Químico/métodos , Fumaratos/análise , Leite/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adsorção , Animais , Calibragem , Fumarato de Dimetilo , Fumaratos/isolamento & purificação , Análise dos Mínimos Quadrados , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho/economia , Estireno/química
19.
Micromachines (Basel) ; 13(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422384

RESUMO

Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack active tuning and anisotropic propagation simultaneously. In this paper, we design a graphene/α-MoO3 heterostructure and simulate polariton hybridization between isotropic graphene plasmon polaritons and anisotropic α-MoO3 phonon polaritons. The physical fundamentals for polariton hybridizations depend on the evanescent fields coupling originating from the constituent materials as well as the phase match condition, which can be severely affected by the α-MoO3 thickness and actively tuned by the gate voltages. Hybrid polaritons propagate with in-plane anisotropy that exhibit momentum dispersion characterized by elliptical, hyperboloidal and even flattened iso-frequency contours (IFCs) in the THz range. Our results provide a tunable and flexible anisotropic polariton platform for THz sensing, imaging, and modulation.

20.
J Mech Behav Biomed Mater ; 126: 105009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861520

RESUMO

Polyvinyl alcohol hydrogel (PVA-H) has been widely used in clinical transplantation because of its high water content, good biocompatibility and mechanical properties. However, PVA-H have some problems, such as low elongation at break, low fatigue resistance and high friction coefficient, which hinders its application in clinic. In this paper, a novel high-performance PVA hydrogel enhanced by chemical double crosslinking (CDC) method had been synthesized. The influences of chemical crosslinking agent concentration on mechanical properties, friction properties and fatigue properties of materials were systematically investigated, in order to meet the clinical application of artificial meniscus, artificial cartilage, nucleus pulposus and so on. As a result, due to the introduction of chemical bonds, CDC hydrogels have over 600% elongation at break, modulus loss after fatigue test was reduced by 42%, average coefficient during friction was reduced to 0.048, and biocompatibility performance was excellent. The PVA hydrogel enhanced by CDC method provides a new concept for us to prepare high-performance PVA hydrogel and a promising material to replace cartilage, meniscus, nucleus pulposus and other tissues.


Assuntos
Hidrogéis , Álcool de Polivinil , Cartilagem , Fricção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA