Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204943

RESUMO

The expression of robot arm morphology is a critical foundation for achieving effective motion planning and collision avoidance in robotic systems. Traditional geometry-based approaches usually suffer from the contradiction between the high demand for computing resources for fine expression and the insufficient detail expression caused by the pursuit of efficiency. The signed distance function addresses these drawbacks due to its ability to handle complex and arbitrary shapes and lower computational requirements. However, conventional robotic morphology methods based on the signed distance function often face challenges when the robot moves dynamically, since robots with different postures are modeled as independent individuals but the postures of robots are infinite. In this paper, we introduce RobotSDF, an implicit morphology modeling approach that can express the robot shape of arbitrary posture precisely. Instead of depicting a whole model of the robot arm, RobotSDF models the robot morphology as integrated implicit joint models driven by joint configurations. In this approach, the dynamic shape change process of the robot is converted into the coordinate transformations of query points within each joint's coordinate system. Experimental results with the Elfin robot demonstrate that RobotSDF can accurately depict robot shapes across different postures up to the millimeter level, which exhibits 38.65% and 66.24% improvement over the Neural-JSDF and configuration space distance field algorithms, respectively, in representing robot morphology. We further verified the efficiency of RobotSDF through collision avoidance in both simulation and actual human-robot collaboration experiments.

2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982249

RESUMO

Farnesoid X receptor (FXR) is a nuclear receptor known to play protective roles in anti-hepatocarcinogenesis and regulation of the basal metabolism of glucose, lipids, and bile acids. FXR expression is low or absent in HBV-associated hepatocarcinogenesis. Full-length HBx and HBx C-terminal truncation are frequently found in clinical HCC samples and play distinct roles in hepatocarcinogenesis by interacting with FXR or FXR signaling. However, the impact of C-terminal truncated HBx on the progression of hepatocarcinogenesis in the absence of FXR is unclear. In this study, we found that one known FXR binding protein, a C-terminal truncated X protein (HBx C40) enhanced obviously and promoted tumor cell proliferation and migration by altering cell cycle distribution and inducing apoptosis in the absence of FXR. HBx C40 enhanced the growth of FXR-deficient tumors in vivo. In addition, RNA-sequencing analysis showed that HBx C40 overexpression could affect energy metabolism. Overexpressed HSPB8 aggravated the metabolic reprogramming induced by down-regulating glucose metabolism-associated hexokinase 2 genes in HBx C40-induced hepatocarcinogenesis. Overall, our study suggests that C-terminal truncated HBx C40 synergizes with FXR deficiency by altering cell cycle distribution as well as disturbing glucose metabolism to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Vírus da Hepatite B/genética , Neoplasias Hepáticas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias
3.
Nucleic Acids Res ; 46(4): 1793-1809, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29253179

RESUMO

EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3-lysine 4 (H3-K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.


Assuntos
Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas do Citoesqueleto/biossíntese , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Masculino , Camundongos Nus , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
4.
Sensors (Basel) ; 20(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114444

RESUMO

Real-time obstacle avoidance path planning is critically important for a robot when it operates in a crowded or cluttered workspace. At the same time, the computational cost is a big concern once the degree of freedom (DOF) of a robot is high. A novel path planning strategy, the distorted configuration space (DC-space) method, was proposed and proven to outperform the traditional search-based methods in terms of computational efficiency. However, the original DC-space method did not sufficiently consider the demands on automatic planning, convex space preservation, and path optimization, which makes it not practical when applied to the path planning for robot manipulators. The treatments for the problems mentioned above are proposed in this paper, and their applicability is examined on a three DOFs robot. The experiments demonstrate the effectiveness of the proposed improved distorted configuration space (IDCS) method on rapidly finding an obstacle-free path. Besides, the optimized IDCS method is presented to shorten the generated path. The performance of the above algorithms is compared with the classic Rapidly-exploring Random Tree (RRT) searching method in terms of their computation time and path length.

5.
Sensors (Basel) ; 20(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941066

RESUMO

Most path-planning algorithms can generate a reasonable path by considering the kinematic characteristics of the vehicles and the obstacles in hydrographic survey activities. However, few studies consider the influence of vehicle dynamics, although excluding system dynamics may considerably damage the measurement accuracy especially when turning at high speed. In this study, an adaptive iterative learning algorithm is proposed to optimize the turning parameters, which accounts for the dynamic characteristics of unmanned surface vehicles (USVs). The resulting optimal turning radius and speed are used to generate the path and speed profiles. The simulation results show that the proposed path-smoothing and speed profile design algorithms can largely increase the path-following performance, which potentially can help to improve the measurement accuracy of various activities.

6.
J Nutr ; 148(6): 834-843, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741716

RESUMO

Background: Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. Objective: The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. Methods: HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Results: Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells. Conclusion: Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.


Assuntos
Carcinogênese/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Riboflavina/metabolismo , Riboflavina/farmacologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Células HEK293 , Humanos , Camundongos , Células NIH 3T3
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2240-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26190820

RESUMO

Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.


Assuntos
Proteínas de Fase Aguda/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Neoplasias Esofágicas/metabolismo , Lipocalinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Fase Aguda/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Lipocalina-2 , Lipocalinas/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética
8.
J Pathol ; 231(2): 257-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23836524

RESUMO

In contrast to the well-recognized loss of adherens junctions in cancer progression, the role of desmosomal components in cancer development has not been well explored. We previously demonstrated that desmocollin-2 (DSC2), a desmosomal cadherin protein, is reduced in oesophageal squamous cell carcinoma (ESCC), and is associated with enhanced tumour metastasis and poor prognosis. Here, we report that restoration of DSC2 in ESCC cells impeded cell migration and invasion both in vitro and in vivo, whereas siRNA-mediated suppression of DSC2 expression increased cell motility. In E-cadherin-expressing ESCC cells, DSC2 restoration strengthened E-cadherin-mediated adherens junctions and promoted the localization of ß-catenin at these junctions, which indirectly inhibited ß-catenin-dependent transcription. These effects of DSC2 were not present in EC109 cells that lacked E-cadherin expression. ESCC patients with tumours that had reduced E-cadherin and negative DSC2 had poorer clinical outcomes than patients with tumours that lacked either E-cadherin or DSC2, implying that the invasive potential of ESCC cells was restricted by both DSC2 and E-cadherin-dependent junctions. Further studies revealed that DSC2 was a downstream target of miR-25. Enhanced miR-25 promoted ESCC cell invasiveness, whereas restoration of DSC2 abolished these effects. Collectively, our work suggests that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Desmocolinas/metabolismo , Neoplasias Esofágicas/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Desmocolinas/genética , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Transfecção , Transplante Heterólogo
9.
J Dyn Syst Meas Control ; 135(3): 345031-345038, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23904647

RESUMO

This paper investigates fundamental performance limitations in the control of a combine harvester's header height control system. There are two primary subsystem characteristics that influence the achievable bandwidth by affecting the open loop transfer function. The first subsystem is the mechanical configuration of the combine and header while the second subsystem is the electrohydraulic actuation for the header. The mechanical combine + header subsystem results in an input-output representation that is underactuated and has a noncollocated sensor/actuator pair. The electrohydraulic subsystem introduces a significant time delay. In combination, they each reinforce the effect of the other thereby exacerbating the overall system limitation of the closed loop bandwidth. Experimental results are provided to validate the model and existence of the closed loop bandwidth limitations that stem from specific system design configurations.

10.
Virus Res ; 293: 198264, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359549

RESUMO

Hepatitis B virus (HBV) X protein (HBx) is a key regulator of HBV-associated hepatocarcinogenesis. C-terminal-truncated HBx is frequently detected in hepatocellular carcinoma (HCC). The role of HBx, especially C-terminal-truncated HBx, in HCC pathogenesis has been controversial. To elucidate the biological role of C-terminal-truncated HBx underlying HBV-associated hepato-oncogenesis, we constructed a vector expressing HBx-C30 (deletion of 30 aa from the C terminus of HBx) and functionally analyzed its regulation on farnesoid X receptor (FXR) signaling, which is known to inhibit hepatocarcinogenesis. In the present study, we found full-length HBx and HBx C-terminal truncation coexist in HCC, and both full length HBx and HBx-C30 can activate FXR signaling. Moreover, HBx-C30 weakly coactivates FXR-KNG1 signaling compared to full-length HBx.


Assuntos
Carcinoma Hepatocelular , Hepatite B/complicações , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Humanos , Cininogênios , Neoplasias Hepáticas/genética , Proteínas de Ligação a RNA , Transdução de Sinais
11.
Int J Cancer ; 124(11): 2549-58, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19165868

RESUMO

Ezrin, which crosslinks the cytoskeleton and plasma membrane, is involved in the growth and metastatic potential of cancer cells. Ezrin expression in esophageal squamous cell carcinoma (ESCC) was described recently, but its roles and the underlying mechanism(s) remain unclear. In our study, we first showed that ezrin in ESCC cell is expressed in the nucleus as well as in the cytoplasm and plasma membrane. Then, by using RNAi, we revealed that interference of ezrin expression suppressed the growth, adhesion and invasiveness of ESCC cells. Tumorigenesis experiments revealed that ezrin may directly regulate tumor formation in vivo. To explore the molecular mechanisms through which ezrin contributes to the proliferation and invasiveness of ESCC cells, we used cDNA microarrays to analyze ezrin knockdown cells and the control cells; of 39,000 genes examined, 297 were differentially expressed upon ezrin knockdown, including some proliferation- and invasiveness-related genes such as ATF3, CTGF and CYR61. Furthermore, pathway analysis showed that ezrin knockdown led to decreased activation of the TGF-beta and MAPK pathways, and ezrin-mediated cell invasiveness alteration was dependent on the activation of these pathways. Finally, immunohistochemical staining on 80 ESCC specimens and 50 normal esophageal mucosae revealed that the expression levels of 3 altered genes involved in the regulation of cell proliferation and tumor metastasis, including CTGF, CYR61 and ATF3, were altered in ESCCs, and their expression pattern correlated with ezrin expression. Taken together, we propose that ezrin might function in the growth and invasiveness of ESCC cells through the MAPK and TGF-beta pathways.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Fator 3 Ativador da Transcrição/genética , Animais , Carcinoma de Células Escamosas/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61/genética , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/patologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Camundongos , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/fisiologia
12.
Biomed Res Int ; 2018: 2049313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327774

RESUMO

Invasion and metastasis are critical pathological and mortal processes in esophageal squamous cell carcinoma (ESCC). Novel drugs, targeting the two cancer migration stages, will augment the treatment options for ESCC therapy and improve overall survival. A novel natural macrolide F806 specifically promotes apoptosis of various ESCC cells. However, whether F806 can inhibit metastasis of ESCC cells needs further evaluation. Here, our data showed that F806 inhibits dynamic F-actin assembly and then suppresses the migration of ESCC cells in vitro and their invasion and metastasis in vivo. The correlation between cancer migration and actin cytoskeleton assembly was consistent with the ability of F806 to prevent the aggregation of Paxillin, an essential protein for focal adhesion formation through binding to the ends of actin filaments. Furthermore, F806 downregulated the expression and activity of the Rho family proteins cell division cycle 42 (CDC42), RAC family small GTPase 1 (RAC1), and RAS homolog family member A (RHOA). Taken together, these results suggest that F806 can suppress cancer invasion and metastasis via interrupting the assembly of migration components involving F-actin.


Assuntos
Actinas/metabolismo , Antineoplásicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Animais , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas rho de Ligação ao GTP/genética
13.
Int J Biochem Cell Biol ; 88: 162-171, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28504189

RESUMO

BACKGROUND: Ezrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear. METHODS: Distribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis. RESULTS: Ezrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo. CONCLUSION: Ezrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Neoplasias Esofágicas/patologia , Pseudópodes/patologia , Serina/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto/genética , Carcinoma de Células Escamosas do Esôfago , Humanos , Metástase Linfática , Mutação , Invasividade Neoplásica , Fosforilação , Transporte Proteico
14.
J Mol Med (Berl) ; 95(12): 1355-1368, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28939985

RESUMO

L1 cell adhesion molecule (L1CAM) is highly expressed in various types of human cancers, displaying yet unknown molecular mechanisms underlying their oncogenic potential. Here, we found that L1CAM expression was significantly increased in esophageal squamous cell carcinoma (ESCC; n = 157) lesions compared with non-cancerous tissues. High tumorous L1CAM expression significantly correlated with reduced overall survival. Experimentally, L1CAM knockdown led to decreased cell growth, migration, and invasiveness in vitro, whereas overexpression of L1CAM showed the opposite effect. In nude mice, L1CAM depletion attenuated tumorigenesis and ability to penetrate the tissues surrounding ESCC cells. Gene set enrichment analysis (GSEA) and SubpathwayMiner analysis on gene expression profiles (microarray data on ESCC tissues, GSE53625; cDNA microarray data on L1CAM-knockdown ESCC cell line, GSE86268) suggested that L1CAM-co-expression genes were related to cell motility, cell proliferation, and regulation of actin cytoskeleton, validating the above experimental findings. Further mechanistical analysis showed that L1CAM upregulated the expression of the cytoskeletal protein ezrin via activating integrin ß1/MAPK/ERK/AP1 signaling and thus led to the malignant phenotypes of ESCC cells. Together, our findings suggest that L1CAM may be employed as a valuable prognosis marker and a therapeutic target for ESCC patients and that L1CAM promotes ESCC tumorigenicity by upregulating ezrin expression. KEY MESSAGES: L1CAM promotes growth and invasiveness of ESCC cells in vitro and in vivo. L1CAM upregulates the expression of ezrin by integrin α5ß1/MAPK/ERK/AP1 pathway. Ezrin is a key downstream effector in the L1CAM-promoted malignant phenotypes. High expression levels of both L1CAM and ezrin significantly correlated with reduced overall survival. Nuclear L1CAM is an independent prognosis marker for esophageal squamous cell carcinoma.


Assuntos
Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteínas do Citoesqueleto/metabolismo , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Fenótipo , Prognóstico , Transdução de Sinais/genética , Frações Subcelulares/metabolismo , Regulação para Cima/genética
15.
Mol Med Rep ; 14(5): 4802-4810, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748861

RESUMO

The key molecular events that contribute to tumorigenesis are incompletely understood. The aim of the present study was to characterize and compare the biological phenotypes of three human telomerase reverse transcriptase (hTERT) and/or human papillomavirus 16 E6 and E7­immortalized esophageal epithelial cell lines, NE2­hTERT (NE2), NE3­E6E7­hTERT (NE3) and NEcA6­E6E7­hTERT (NEcA6). The present study used soft­agar colony formation assays, tumorigenicity assays in nude mice, and cell proliferation, adhesion and migration assays to identify the biological characteristics of NE2, NE3 and NEcA6 cells. NE2 and NE3 cells exhibited characteristics of benign cells, such as the inability to grow in soft agar or form tumors in nude mice. By contrast, NEcA6 cells had undergone transformation, as demonstrated by the ability to grow in soft agar and form tumors in nude mice. In addition, NEcA6 cells exhibited increased migration and adhesion capabilities when compared with NE2 and NE3 cells. In order to identify mechanism(s) that may contribute to the altered biological phenotypes exhibited by these cells, the expression of three proteins involved in modulating cell migration [fascin, ezrin/radixin/moesin family proteins and phosphorylated­focal adhesion kinase (Tyr 397)], as well as the expression status and subcellular localization of three key focal adhesions components (paxillin, talin and kindlin­2) were examined. Paxillin, talin and kindlin­2 were localized to adhesive sites that connect F­actin with the extracellular matrix in transformed NEcA6 cells, but were distributed in a diffuse manner in NE2 and NE3 cells. Knockdown of kindlin­2 in NE3 and NEcA6 cells decreased cell adhesion, however, NEcA6 cells demonstrated a greater sensitivity to knockdown of kindlin­2. No significant differences were observed in the protein expression levels of fascin, exrin/radixin/moesin and p­FAK in the three cell lines. In conclusion, these results demonstrate that these three focal adhesion components, particularly kindlin­2, may contribute to the carcinogenesis of esophageal squamous cells.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Animais , Biomarcadores , Adesão Celular , Linhagem Celular Transformada , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Esôfago/metabolismo , Esôfago/patologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , RNA Interferente Pequeno/genética
16.
Biofabrication ; 8(1): 015005, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26744897

RESUMO

Calcium phosphate (CaP) materials have been proven to be efficacious as bone scaffold materials, but are difficult to fabricate into complex architectures because of the high processing temperatures required. In contrast, polymeric materials are easily formed into scaffolds with near-net-shape forms of patient-specific defects and with domains of different materials; however, they have reduced load-bearing capacity compared to CaPs. To preserve the merits of CaP scaffolds and enable advanced scaffold manufacturing, this manuscript describes an additive manufacturing process that is coupled with a mold support for overhanging features; we demonstrate that this process enables the fabrication of CaP scaffolds that have both complex, near-net-shape contours and distinct domains with different microstructures. First, we use a set of canonical structures to study the manufacture of complex contours and distinct regions of different material domains within a mold. We then apply these capabilities to the fabrication of a scaffold that is designed for a 5 cm orbital socket defect. This scaffold has complex external contours, interconnected porosity on the order of 300 µm throughout, and two distinct domains of different material microstructures.


Assuntos
Substitutos Ósseos/síntese química , Fosfatos de Cálcio/química , Fraturas Orbitárias/terapia , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Fraturas Orbitárias/patologia , Resultado do Tratamento
17.
Hum Pathol ; 52: 153-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26980013

RESUMO

Epigenetic alterations, including DNA methylation and histone modifications, are involved in the regulation of cancer initiation and progression. SET and MYND domain-containing protein 3 (SMYD3), a methyltransferase, plays an important role in transcriptional regulation during human cancer progression. However, SMYD3 expression and its function in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, SMYD3 expression was studied by immunohistochemistry in a tumor tissue microarray from 131 cases of ESCC patients. Statistical analysis showed that overall survival of patients with high SMYD3 expressing in primary tumors was significantly lower than that of patients with low SMYD3-expressing tumors (P = .008, log-rank test). Increased expression of SMYD3 was found to be associated with lymph node metastasis in ESCC (P = .036) and was an independent prognostic factor for poor overall survival (P = .025). RNAi-mediated knockdown of SMYD3 suppressed ESCC cell proliferation, migration, and invasion in vitro and inhibited local tumor invasion in vivo. SMYD3 regulated transcription of EZR and LOXL2 by directly binding to the sequences of the promoter regions of these target genes, as demonstrated by a chromatin immunoprecipitation assay. Immunohistochemical staining of ESCC tissues also confirmed that protein levels of EZR and LOXL2 positively correlated with SMYD3 expression, and the Spearman correlation coefficients (rs) were 0.78 (n = 81; P < .01) and 0.637 (n = 103; P < .01), respectively. These results indicate that SMYD3 enhances tumorigenicity in ESCC through enhancing transcription of genes involved in proliferation, migration, and invasion.


Assuntos
Aminoácido Oxirredutases/metabolismo , Carcinoma de Células Escamosas/enzimologia , Movimento Celular , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Neoplasias Esofágicas/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Transcrição Gênica , Ativação Transcricional , Aminoácido Oxirredutases/genética , Animais , Sítios de Ligação , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais , Interferência de RNA , Estudos Retrospectivos , Transdução de Sinais , Fatores de Tempo , Transfecção
18.
PLoS One ; 10(4): e0124680, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915860

RESUMO

The membrane-cytoskeleton link organizer ezrin may be the most "dramatic" tumor marker, being strongly over-expressed in nearly one-third of human malignancies. However, the molecular mechanisms of aberrant ezrin expression still need to be clarified. Ezrin, encoded by the VIL2 gene, has two transcript variants that differ in the transcriptional start site (TSS): V1 and V2. Both V1 and V2 encode the same protein. Here, we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) induced over-expression of human VIL2 in esophageal squamous cell carcinoma (ESCC) cells. Furthermore, VIL2 V1 but not V2 was up-regulated after TPA stimulation in a time-dependent manner. AP-1 and Sp1 binding sites within the promoter region of VIL2 V1 acted not only as basal transcriptional elements but also as a composite TPA-responsive element (TRE) for the transcription of VIL2 V1. TPA stimulation enhanced c-Jun and Sp1 binding to the TRE via activation of the ERK1/2 pathway and increased protein levels of c-Jun, c-Fos, and Sp1, resulting in over-expression of VIL2 V1, whereas the MEK1/2 inhibitor U0126 blocked these events. Finally, we showed that TPA promoted the migration of ESCC cells whereas MEK1/2 inhibitor or ezrin silencing could partially inverse this alteration. Taken together, these results suggest that TPA is able to induce VIL2 V1 over-expression in ESCC cells by activating MEK/ERK1/2 signaling and increasing binding of Sp1 and c-Jun to the TRE of the VIL2 V1 promoter, and that VIL2 is an important TPA-induced effector.


Assuntos
Processamento Alternativo , Carcinoma de Células Escamosas/genética , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Sítios de Ligação , Butadienos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Códon de Iniciação , Proteínas do Citoesqueleto/metabolismo , DNA/química , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago , Humanos , Nitrilas/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regulação para Cima
19.
Oncotarget ; 6(18): 15940-52, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25909284

RESUMO

The paucity of new drugs for the treatment of esophageal squamous cell carcinoma (ESCC) limits the treatment options. This study characterized the therapeutic efficacy and action mechanism of a novel natural macrolide compound F806 in human ESCC xenograft models and cell lines. F806 inhibited growth of ESCC, most importantly, it displayed fewer undesirable side effects on normal tissues in two human ESCC xenograft models. F806 inhibited proliferation of six ESCC cells lines, with the half maximal inhibitory concentration (IC50) ranging from 9.31 to 16.43 µM. Furthermore, F806 induced apoptosis of ESCC cells, contributing to its growth-inhibitory effect. Also, F806 inhibited cell adhesion resulting in anoikis. Mechanistic studies revealed that F806 inhibited the activation of ß1 integrin in part by binding to a novel site Arg610 of ß1 integrin, suppressed focal adhesion formation, decreased cell adhesion to extracellular matrix and eventually triggered apoptosis. We concluded that F806 would potentially be a well-tolerated anticancer drug by targeting ß1 integrin, resulting in anoikis in ESCC cells.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Integrina beta1/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Humanos , Masculino , Camundongos , Camundongos Nus , Oxazóis/farmacologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Proteomics ; 117: 145-55, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25659534

RESUMO

High-throughput proteomics has successfully identified thousands of proteins as potential therapeutic targets during investigations into mechanisms of drug action. A novel macrolide analog, denoted F806, is a potential antitumor drug. Here, using the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS), we characterize the F806-regulating protein profiles and identify the potential target molecules or pathways of F806 in esophageal squamous cell carcinoma (ESCC) cells. From a total of 1931 quantified proteins, 181 proteins were found to be down-regulated (FDR p-value<0.1, H/L ratio<0.738), and 119 proteins were up-regulated (FDR p-value<0.1, H/L ratio>1.156). Among the down-regulated proteins, we uncovered the over- and under-represented protein clusters in biological process and molecular function respectively by Gene Ontology analysis. Furthermore, down-regulated and up-regulated proteins were significantly enriched in 37 pathways and 60 sub-pathways by bioinformatic analysis (FDR p-value<0.1), while a down-regulated molecule growth factor receptor-bound protein 2 (GRB2) was a prominent node in fourteen cell proliferation-related sub-pathways. We concluded that GRB2 downregulation would be a potential target of F806 in ESCC cells. BIOLOGICAL SIGNIFICANCE: This study used SILAC-based quantitative proteomics screen to systematically characterize molecular changes induced by a novel macrolide analog F806 in esophageal squamous cell carcinoma (ESCC) cells. Followed by bioinformatic analyses, signal pathway networks generated from the quantified proteins, would facilitate future investigation into the further mechanisms of F806 in ESCC cells. Notably, it provided information that growth factor receptor-bound protein 2 (GRB2) would be a prominent node in the F806-targeted cell proliferation network.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Proteína Adaptadora GRB2/metabolismo , Macrolídeos/farmacologia , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Proteína Adaptadora GRB2/genética , Humanos , Proteínas de Neoplasias/genética , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA