RESUMO
Controlling the domain evolution is critical both for optimizing ferroelectric properties and for designing functional electronic devices. Here we report an approach of using the Schottky barrier formed at the metal/ferroelectric interface to tailor the self-polarization states of a model ferroelectric thin film heterostructure system SrRuO3/(Bi,Sm)FeO3. Upon complementary investigations of the piezoresponse force microscopy, electric transport measurements, X-ray photoelectron/absorption spectra, and theoretical studies, we demonstrate that Sm doping changes the concentration and spatial distribution of oxygen vacancies with the tunable host Fermi level which modulates the SrRuO3/(Bi,Sm)FeO3 Schottky barrier and the depolarization field, leading to the evolution of the system from a single domain of downward polarization to polydomain states. Accompanied by such modulation on self-polarization, we further tailor the symmetry of the resistive switching behaviors and achieve a colossal on/off ratio of â¼1.1 × 106 in the corresponding SrRuO3/BiFeO3/Pt ferroelectric diodes (FDs). In addition, the present FD also exhibits a fast operation speed of â¼30 ns with a potential for sub-nanosecond and an ultralow writing current density of â¼132 A/cm2. Our studies provide a way for engineering self-polarization and reveal its strong link to the device performance, facilitating FDs as a competitive memristor candidate used for neuromorphic computing.
RESUMO
Photoelectrochemical water splitting provides a promising strategy for converting solar energy into chemical fuels and has attracted extensive interest. Herein, Bi2MoO6 nanopillars with large surface areas were fabricated on an ITO-coated glass substrate and their photoelectrochemical properties are enhanced through appropriate manipulation of ferroelectric polarization. The Bi2MoO6 photoanode with polarization orientation toward ITO shows an enhanced photocurrent density of 250 µA cm-2 at 1.23 V vs. reversible hydrogen electrode, which is 28% higher than that of pristine Bi2MoO6 nanopillars without macroscopic polarization. The corresponding depolarization electric field benefits the separation of light-excited electron-hole pairs, thus minimizing the recombination of charge carriers and further enhancing the photocurrent current density. Our work offers a new strategy of Bi2MoO6-based photoelectrochemical devices with great potential of application in the conversion of solar energy into chemical fuels.
RESUMO
The recent booming development of wearable electronics urgently calls for high-performance flexible strain sensors. To date, it is still a challenge to manufacture flexible strain sensors with superb sensitivity and a large workable strain range simultaneously. Herein, a facile, quick, cost-effective, and scalable strategy is adopted to fabricate novel strain sensors based on reduced graphene oxide woven fabrics (GWF). By pyrolyzing commercial cotton bandages coated with graphene oxide (GO) sheets in an ethanol flame, the reduction of GO and the pyrolysis of the cotton bandage template can be synchronously completed in tens of seconds. Due to the unique hierarchical structure of the GWF, the strain sensor based on GWF exhibits large stretchability (57% strain) with high sensitivity, inconspicuous drift, and durability. The GWF strain sensor is successfully used to monitor full-range (both subtle and vigorous) human activities or physical vibrational signals of the local environment. The present work offers an effective strategy to rapidly prepare low-cost flexible strain sensors with potential applications in the fields of wearable electronics, artificial intelligence devices, and so forth.