Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.571
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 21(4): 400-411, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123373

RESUMO

Mucosal-associated invariant T (MAIT) cells are activated by microbial riboflavin-based metabolite antigens when presented by MR1. How modifications to the potent antigen 5-OP-RU affect presentation by MR1 and MAIT cell activation remains unclear. Here we design 20 derivatives, termed altered metabolite ligands (AMLs), to dissect the impact of different antigen components on the human MAIT-MR1 axis. Analysis of 11 crystal structures of MAIT T cell antigen receptor (TCR)-MR1-AML ternary complexes, along with biochemical and functional assays, shows that MR1 cell-surface upregulation is influenced by ribityl and non-ribityl components of the ligand and the hydrophobicity of the MR1-AML interface. The polar ribityl chain of the AML strongly influences MAIT cell activation potency through dynamic compensatory interactions within a MAIT TCR-MR1-AML interaction triad. We define the basis by which the MAIT TCR can differentially recognize AMLs, thereby providing insight into MAIT cell antigen specificity and potency.


Assuntos
Antígenos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Linhagem Celular Tumoral , Humanos , Células Jurkat , Ligantes , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Riboflavina/imunologia
2.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
3.
Nature ; 623(7986): 397-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914940

RESUMO

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(26): e2319623121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889142

RESUMO

Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Transplante de Coração , Macrófagos , Monócitos , Tolerância ao Transplante , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Tolerância ao Transplante/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/genética , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Masculino
5.
Trends Genet ; 39(2): 91-93, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35934591

RESUMO

Parental diet is known to influence the offspring in an intergenerational manner, and this has been implicated in species adaptation and general health. Recent studies highlight the role of maternal long noncoding RNAs (lncRNAs) in serving as one of the 'memories' of maternal diet in regulating offspring development and predisposition to metabolic disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dieta
6.
EMBO Rep ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271773

RESUMO

The accumulation of myofibroblasts within the intimal layer of inflamed blood vessels is a potentially catastrophic complication of vasculitis, which can lead to arterial stenosis and ischaemia. In this study, we have investigated how these luminal myofibroblasts develop during Kawasaki disease (KD), a paediatric vasculitis typically involving the coronary arteries. By performing lineage tracing studies in a murine model of KD, we reveal that luminal myofibroblasts develop independently of adventitial fibroblasts and endothelial cells, and instead derive from smooth muscle cells (SMCs). Notably, the emergence of SMC-derived luminal myofibroblasts-in both mice and patients with KD, Takayasu's arteritis and Giant Cell arteritis-coincided with activation of the mechanistic target of rapamycin (mTOR) signalling pathway. Moreover, SMC-specific deletion of mTOR signalling, or pharmacological inhibition, abrogated the emergence of luminal myofibroblasts. Thus, mTOR is an intrinsic and essential regulator of luminal myofibroblast formation that is activated in vasculitis patients and therapeutically tractable. These findings provide molecular insight into the pathogenesis of coronary artery stenosis and identify mTOR as a therapeutic target in vasculitis.

7.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
9.
Plant J ; 118(5): 1372-1387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343032

RESUMO

Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.


Assuntos
Genoma de Planta , Genoma de Planta/genética , China , Adaptação Fisiológica/genética , Fluxo Gênico , Genética Populacional , Genômica , Isolamento Reprodutivo , Filogenia , Variação Genética , Clima , Especiação Genética
10.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198215

RESUMO

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Pyrus , Fatores de Transcrição , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética
11.
Exp Cell Res ; 442(1): 114212, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39168433

RESUMO

Compared with young liver donors, aged liver donors are more susceptible to ischemia-reperfusion injury (IRI) following transplantation, which may be related to excessive inflammatory response and macrophage dysfunction, but the specific mechanism is unclear. Macrophage scavenger receptor 1 (MSR1) is a member of the scavenger receptor family, and plays an important regulatory role in inflammation response and macrophage function regulation. But its role in IRI following aged-donor liver transplantation is still unclear. This study demonstrates that MSR1 expression is decreased in macrophages from aged donor livers, inhibiting their efferocytosis and pro-resolving polarisation. Decreased MSR1 is responsible for the more severe IRI suffered by aged donor livers. Overexpression of MSR1 using F4/80-labelled AAV9 improved intrahepatic macrophage efferocytosis and promoted pro-resolving polarisation, ultimately ameliorating IRI following aged-donor liver transplantation. In vitro co-culture experiments further showed that overexpression of MSR1 promoted an increase in calcium concentration, which further activated the PI3K-AKT-GSK3ß pathway, and induced the upregulation of ß-catenin. Overall, MSR1-dependent efferocytosis promoted the pro-resolving polarisation of macrophages through the PI3K-AKT-GSK3ß pathway-induced up-regulating of ß-catenin leading to improved IRI following aged-donor liver transplantation.


Assuntos
Transplante de Fígado , Macrófagos , Camundongos Endogâmicos C57BL , Fagocitose , Traumatismo por Reperfusão , Receptores Depuradores Classe A , Animais , Transplante de Fígado/métodos , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Camundongos , Macrófagos/metabolismo , Masculino , Receptores Depuradores Classe A/metabolismo , Receptores Depuradores Classe A/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fígado/metabolismo , Fígado/patologia , Transdução de Sinais , Doadores de Tecidos , Eferocitose
12.
Nucleic Acids Res ; 51(D1): D621-D628, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624664

RESUMO

Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.


Assuntos
Produtos Biológicos , Pesquisa Biomédica , Bases de Dados Factuais , Descoberta de Drogas , Preparações Farmacêuticas/isolamento & purificação
13.
Proc Natl Acad Sci U S A ; 119(11): e2113074119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254894

RESUMO

SignificanceWith obesity on the rise, there is a growing appreciation for intracellular lipid droplet (LD) regulation. Here, we show how saturated fatty acids (SFAs) reduce fat storage-inducing transmembrane protein 2 (FIT2)-facilitated, pancreatic ß cell LD biogenesis, which in turn induces ß cell dysfunction and death, leading to diabetes. This mechanism involves direct acylation of FIT2 cysteine residues, which then marks the FIT2 protein for endoplasmic reticulum (ER)-associated degradation. Loss of ß cell FIT2 and LDs reduces insulin secretion, increases intracellular ceramides, stimulates ER stress, and exacerbates diet-induced diabetes in mice. While palmitate and stearate degrade FIT2, unsaturated fatty acids such as palmitoleate and oleate do not, results of which extend to nutrition and diabetes.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Glucose/metabolismo , Intolerância à Glucose , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Palmitatos/metabolismo , Estearatos/metabolismo
14.
Genomics ; 116(5): 110935, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243912

RESUMO

BACKGROUND: Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS: In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS: We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.

15.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211606

RESUMO

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
16.
J Lipid Res ; 65(6): 100569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795861

RESUMO

Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry. However, relatively little is known about the contribution of genetic variation of HTG in people of African ancestry (AA), potentially constraining research and treatment opportunities. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole-genome sequencing data and longitudinal electronic health records available in the All of Us program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between HTG patients and normal TG among a cohort of AA patients (N = 15,373). Those with mild-to-moderate HTG (N = 342) and severe HTG (N ≤ 20) were more likely to carry APOA5 p.S19W (odds ratio = 1.94, 95% confidence interval = [1.48-2.54], P = 1.63 × 10-6 and OR = 3.65, 95% confidence interval: [1.22-10.93], P = 0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) polygenic risk score, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.


Assuntos
Hipertrigliceridemia , Triglicerídeos , Humanos , Triglicerídeos/sangue , Masculino , Feminino , Hipertrigliceridemia/genética , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Apolipoproteína A-V/genética , População Negra/genética , Adulto , Negro ou Afro-Americano/genética
17.
J Cell Physiol ; 239(6): e31272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646844

RESUMO

The inhibition of cell surface crystal adhesion and an appropriate increase in crystal endocytosis contribute to the inhibition of kidney stone formation. In this study, we investigated the effects of different degrees of carboxymethylation on these processes. An injury model was established by treating human renal proximal tubular epithelial (HK-2) cells with 98.3 ± 8.1 nm calcium oxalate dihydrate (nanoCOD) crystals. The HK-2 cells were protected with carboxy (-COOH) Desmodium styracifolium polysaccharides at 1.17% (DSP0), 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3). Changes in biochemical indexes and effects on nanoCOD adhesion and endocytosis were detected. The protection of HK-2 cells from nanoCOD-induced oxidative damage by carboxymethylated Desmodium styracifolium polysaccharides (CDSPs) is closely related to the protection of subcellular organelles, such as mitochondria. CDSPs can reduce crystal adhesion on the cell surface and maintain appropriate crystal endocytosis, thereby reducing the risk of kidney stone formation. CDSP2 with moderate -COOH content showed the strongest protective activity among the CDSPs.


Assuntos
Oxalato de Cálcio , Endocitose , Cálculos Renais , Polissacarídeos , Humanos , Oxalato de Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Cristalização , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Cálculos Renais/prevenção & controle , Cálculos Renais/tratamento farmacológico , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Sobrevivência Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Cálcio/metabolismo , Espaço Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
18.
BMC Genomics ; 25(1): 797, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179980

RESUMO

BACKGROUND: R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS: In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION: This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Filogenia , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
19.
J Am Chem Soc ; 146(10): 6628-6637, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38359144

RESUMO

Currently, the desired research focus in energy storage technique innovation has been gradually shifted to next-generation aqueous batteries holding both high performance and sustainability. However, aqueous Zn-I2 batteries have been deemed to have great sustainable potential, owing to the merits of cost-effective and eco-friendly nature. However, their commercial application is hindered by the serious shuttle effect of polyiodides during reversible operations. In this work, a Janus functional binder based on chitosan (CTS) molecules was designed and prepared; the polar terminational groups impart excellent mechanical robustness to hybrid binders; meanwhile, it can also deliver isochronous enhancement on physical adsorption and redox kinetics toward I2 species. By feat of highly effective remission to shuttle effect, the CTS cell exhibits superb electrochemical storage capacities with long-term robustness, specifically, 144.1 mAh g-1, at a current density of 0.2 mA g-1 after 1500 cycles. Simultaneously, the undesired self-discharging issue could be also well-addressed; the Coulombic efficiency could remain at 98.8 % after resting for 24 h. More importantly, CTS molecules endow good biodegradability and reusable properties; after iodine species were reloaded, the recycled devices could also deliver specific capacities of 73.3 mAh g-1, over 1000 cycles. This Janus binder provides a potential synchronous solution to realize high comprehensive performance with high iodine utilization and further make it possible for sustainable Zn-I2 batteries.

20.
J Am Chem Soc ; 146(11): 7295-7304, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38364093

RESUMO

All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA