RESUMO
Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1-5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.
RESUMO
We report a study of thickness-dependent interband and intraband magnetic breakdown by thermoelectric quantum oscillations in ZrSiSe nanoplates. Under high magnetic fields of up to 30 T, quantum oscillations arising from degenerated hole pockets were observed in thick ZrSiSe nanoplates. However, when decreasing the thickness, plentiful multifrequency quantum oscillations originating from hole and electron pockets are captured. These multiple frequencies can be explained by the emergent interband magnetic breakdown enclosing individual hole and electron pockets and intraband magnetic breakdown within spin-orbit coupling (SOC) induced saddle-shaped electron pockets, resulting in the enhanced contribution to thermal transport in thin ZrSiSe nanoplates. These experimental frequencies agree well with theoretical calculations of the intriguing tunneling processes. Our results introduce a new member of magnetic breakdown to the field and open up a dimension for modulating magnetic breakdown, which holds fundamental significance for both low-dimensional topological materials and the physics of magnetic breakdown.
RESUMO
The anomalous Hall effect (AHE) is an important transport signature revealing topological properties of magnetic materials and their spin textures. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator. However, the origin of its intriguing AHE behaviors remains elusive. Here, we demonstrate the Berry curvature-dominated intrinsic AHE in wafer-scale MnBi2Te4 films. By applying back-gate voltages, we observe an ambipolar conduction and n-p transition in â¼7-layer MnBi2Te4, where a quadratic relation between the AHE resistance and longitudinal resistance suggests its intrinsic AHE nature. In particular, for â¼3-layer MnBi2Te4, the AHE sign can be tuned from pristine negative to positive. First-principles calculations unveil that such an AHE reversal originated from the competing Berry curvature between oppositely polarized spin-minority-dominated surface states and spin-majority-dominated inner bands. Our results shed light on the underlying physical mechanism of the intrinsic AHE and provide new perspectives for the unconventional sign-tunable AHE.
RESUMO
Bulk quantum Hall effect (QHE), the natural extension of the two-dimensional (2D) QHE, is one of the representative phenomena of coherent electron transport. However, bulk QHE has rarely been reported in real materials with macroscopic sizes. Here, we report a novel bulk QHE in macroscopic millimeter-sized and nanostructured TaP crystals consisting of nanometer-scale lamellae. Specifically, the simultaneous quantum plateaus were observed in both transverse resistivity ρxy and vertical resistivity ρzz. The bulk QHE is attributable to synergetic action between Landau cyclotron movement under magnetic field B and periodically modulated potential due to the nanometer-scaled lamellae. This mechanism would form the fixed number of edge states along B-perpendicular and B-parallel directions respectively, equivalent to stacked 2D-QHE layers, leading to quantized ρxy and ρzz. Our work verifies that microstructure engineering could result in the coherent transport of electrons and generate new quantum phenomena in bulk materials.
RESUMO
The quantum Hall effect is one of the exclusive properties displayed by Dirac Fermions in topological insulators, which propagates along the chiral edge state and gives rise to quantized electron transport. However, the quantum Hall effect formed by the nondegenerate Dirac surface states has been elusive so far. Here, we demonstrate the nondegenerate integer quantum Hall effect from the topological surface states in three-dimensional (3D) topological insulator ß-Ag2Te nanostructures. Surface-state dominant conductance renders quantum Hall conductance plateaus with a step of e2/h, along with typical thermopower behaviors of two-dimensional (2D) massless Dirac electrons. The 2D nature of the topological surface states is proven by the electrical and thermal transport responses under tilted magnetic fields. Moreover, the degeneracy of the surface states is removed by structure inversion asymmetry (SIA). The evidenced SIA-induced nondegenerate integer quantum Hall effect in low-symmetry ß-Ag2Te has implications for both fundamental study and the realization of topological magneto-electric effects.
RESUMO
The motion of Abrikosov vortices is the dominant origin of dissipation in type II superconductors subjected to a magnetic field, which leads to a finite electrical resistance. It is generally believed that the increase in the magnetic field results in the aggravation of energy dissipation through the increase in vortex density. Here, we show a distinctive re-entrance of the dissipationless state in quasi-one-dimensional superconducting Ta2PdS5 nanostrips. Utilizing magnetotransport measurements, we unveil a prominent magnetoresistance drop with the increase in the magnetic field below the superconducting transition temperature, manifesting itself as a giant re-entrance to the superconducting phase. Time-dependent Ginzburg-Landau calculations show that this is originated from the suppression of the vortex motion by the increased energy barrier on the edges. Interestingly, both our experiments and simulations demonstrate that this giant re-entrance of superconductivity occurs only in certain geometrical regimes because of the finite size of the vortex.
RESUMO
Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.
RESUMO
Stimulated by novel properties in topological insulators, experimentally realizing quantum phases of matter and employing control over their properties have become a central goal in condensed matter physics. ß-silver telluride (Ag2Te) is predicted to be a new type narrow-gap topological insulator. While enormous efforts have been plunged into the topological nature in silver chalcogenides, sophisticated research on low-dimensional nanostructures remains unexplored. Here, we report the record-high bulk carrier mobility of 298â¯600 cm2/(V s) in high-quality Ag2Te nanoplates and the coexistence of the surface and bulk state from systematic Shubnikov-de Haas oscillations measurements. By tuning the correlation between the top and bottom surfaces, we can effectively enhance the contribution of the surface to the total conductance up to 87% at 130 V. These results are instrumental to the high-mobility physics study and even suitable to explore exotic topological phenomena in this material system.
RESUMO
In two-dimensional (2D) systems, high mobility is typically achieved in low-carrier-density semiconductors and semimetals. Here, we discover that the nanobelts of Weyl semimetal NbAs maintain a high mobility even in the presence of a high sheet carrier density. We develop a growth scheme to synthesize single crystalline NbAs nanobelts with tunable Fermi levels. Owing to a large surface-to-bulk ratio, we argue that a 2D surface state gives rise to the high sheet carrier density, even though the bulk Fermi level is located near the Weyl nodes. A surface sheet conductance up to 5-100 S per â¡ is realized, exceeding that of conventional 2D electron gases, quasi-2D metal films, and topological insulator surface states. Corroborated by theory, we attribute the origin of the ultrahigh conductance to the disorder-tolerant Fermi arcs. The evidenced low-dissipation property of Fermi arcs has implications for both fundamental study and potential electronic applications.
RESUMO
The recent discovery of intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has opened up a new arena for spintronics, raising an opportunity of achieving tunable intrinsic 2D vdW magnetism. Here, we show that the magnetization and the magnetic anisotropy energy (MAE) of few-layered Fe_{3}GeTe_{2} (FGT) is strongly modulated by a femtosecond laser pulse. Upon increasing the femtosecond laser excitation intensity, the saturation magnetization increases in an approximately linear way and the coercivity determined by the MAE decreases monotonically, showing unambiguously the effect of the laser pulse on magnetic ordering. This effect observed at room temperature reveals the emergence of light-driven room-temperature (300 K) ferromagnetism in 2D vdW FGT, as its intrinsic Curie temperature T_{C} is â¼200 K. The light-tunable ferromagnetism is attributed to the changes in the electronic structure due to the optical doping effect. Our findings pave a novel way to optically tune 2D vdW magnetism and enhance the T_{C} up to room temperature, promoting spintronic applications at or above room temperature.
RESUMO
In this Letter, we demonstrate an electrically contacted saturable absorber (SA) device based on topological Dirac semimetal Cd3As2. With a current-induced temperature change in the range of 297-336 K, the modulation depth of the device is found to be significantly altered from 33% to 76% (under the irradiation of a 1560 nm femtosecond laser). The broad tuning of the modulation depth is attributed to the strong temperature dependence of the carrier concentration close to room temperature. The simple tuning mechanism uncovered here, together with the compatibility with III-V compounds substrate, such as GaAs, points to the potential of fabricating broadband, electrically tunable, SESAM-like devices based on emerging bulk Dirac materials.
RESUMO
In this Letter, we successfully introduce a long-lived non-radiative photocarrier decay component in a Dirac semimetal Cd3As2 thin film via Mn doping. The long-lived decay component is found to vary between 200 ps and 2.8 ns with different Mn concentrations and probing wavelengths. Most remarkably, the elongated transients persist over the important mid-infrared wavelengths (observed up to 4 µm). Saturable absorption measurement reveals stronger modulation effects for long-width pulses (â¼80 ps) from the Mn-doped samples. Our results provide new insights into the effect of transition-metal doping on the ultrafast optical properties of Dirac semimetal Cd3As2 and establish Cd3As2 as a highly amendable material for mid-infrared photonic applications.
RESUMO
In this Letter, the transient nonlinear absorption of three-dimensional (3D) topological Dirac semimetal Cd3As2 thin film was characterized in the near-infrared band. By performing broadband pump-probe measurements, we experimentally proved that molecular beam epitaxy (MBE) grown Cd3As2 exhibits strong and tunable saturable absorption effects across 1-2 µm. By further inserting the Cd3As2 film into the cavities of Tm- and Er-doped fiber lasers, we obtained stable mode-locked operations at 1.96 and 1.56 µm. Our results experimentally establish that Cd3As2 is a promising broadband saturable absorber (SA) for pulsed lasers in the infrared range.
RESUMO
Transitional metal ditelluride WTe2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe2. Here, we report a successful synthesis of mono- to few-layer WTe2 via chemical vapor deposition. Using atomically thin WTe2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe2 as a promising platform for exotic electronic and spintronic device applications.
RESUMO
Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions, and that was soon realized by external modulations such as magnetic fields. However, an intrinsic manipulation of Dirac states, which is more efficient and desirable, remains a significant challenge. Here, we report a systematic study of quasi-particle dynamics and band evolution in Cd3As2 thin films with controlled chromium (Cr) doping by both magneto-infrared spectroscopy and electrical transport. We observe the âB relation of inter-Landau-level resonance in Cd3As2, an important signature of ultrarelativistic massless state inaccessible in previous optical experiments. A crossover from quantum to quasi-classical behavior makes it possible to directly probe the mass of Dirac fermions. Importantly, Cr doping allows for a Dirac mass acquisition and topological phase transition enabling a desired dynamic control of Dirac fermions. Corroborating with the density-functional theory calculations, we show that the mass generation can be explained by the explicit C4 rotation symmetry breaking and the resultant Dirac gap engineering through Cr substitution for Cd atoms. The manipulation of the system symmetry and Dirac mass in Cd3As2 thin films provides a tuning knob to explore the exotic states stemming from the parent phase of Dirac semimetals.
RESUMO
The abundant electronic and optical properties of 2D materials that are just one-atom thick pave the way for many novel electronic applications. One important application is to explore the band-to-band tunneling in the heterojunction built by different 2D materials. Here, a gate-controlled WSe2 transistor is constructed by using different work function metals to form the drain (Pt) and source (Cr) electrodes. The device can be gate-modulated to exhibit three modes of operation, i.e., the tunneling mode with remarkable negative differential resistance, the transition mode with a second electron tunneling phenomenon for backward bias, and finally the conventional diode mode with rectifying characteristics. In contrast to the heterojunctions built by different 2D materials, these devices show significantly enhanced tunneling current by two orders of magnitude, which may largely benefit from the clean interfaces. These results pave the way toward design of novel electronic devices using the modulation of metal work functions.
RESUMO
To improve the interfacial charge transfer that is crucial to the performance of perovskite solar cells, the interface engineering in a device should be rationally designed. Here we have developed an interface engineering method to tune the photovoltaic performance of planar-heterojunction perovskite solar cells by incorporating MAPbBr3-xIx (MA = CH3NH3) quantum dots (QDs) between the MAPbI3 perovskite film and the hole-transporting material (HTM) layer. By adjustment of the Br:I ratio, the as-synthesized MAPbBr3-xIx QDs show tunable fluorescence and band edge positions. When the valence band (VB) edge of MAPbBr3-xIx QDs is located below that of the MAPbI3 perovskite, the hole transfer from the MAPbI3 perovskite film to the HTM layer is hindered, and hence, the power conversion efficiency decreases. In contrast, when the VB edge of MAPbBr3-xIx QDs is located between the VB edge of the MAPbI3 perovskite film and the highest occupied molecular orbital of the HTM layer, the hole transfer from the MAPbI3 perovskite film to the HTM layer is well-facilitated, resulting in significant improvements in the fill factor, short-circuit photocurrent, and power conversion efficiency.
RESUMO
Recently, rock-salt IV-VI semiconductors, such as Pb(1-x)Sn(x)Se(Te) and SnTe, have been observed to host topological crystalline insulator (TCI) states. The nontrivial states have long been believed to exhibit ambipolar field effects and possess massive Dirac Fermions in two-dimension (2D) limit due to the surface hybridization. However, these exciting attributes of TCI remain previously inaccessible owing to the complicated control over composition and thickness. Here, we systematically investigate doping and thickness-induced topological phase transitions by electrical transport. We demonstrate the first evidence of the ambipolar properties in Pb(1-x)Sn(x)Se thin films. Surface gap opening is observed in 10 nm TCI originated from the strong finite-size effect. Importantly, magnetoconductance hosts a competition between weak antilocalization and weak localization, suggesting a strikingly tunable Berry phase evolution and strong electron-electron interaction. Our findings serve as a new probe to study electron behavior and pave the way for further exploring and manipulating this novel 2D TCI phase.
RESUMO
Three-dimensional (3D) Dirac semimetals are 3D analogues of graphene, which display Dirac points with linear dispersion in k-space, stabilized by crystal symmetry. Cd3As2 has been predicted to be 3D Dirac semimetals and was subsequently demonstrated by angle-resolved photoemission spectroscopy. As unveiled by transport measurements, several exotic phases, such as Weyl semimetals, topological insulators, and topological superconductors, can be deduced by breaking time reversal or inversion symmetry. Here, we reported a facile and scalable chemical vapor deposition method to fabricate high-quality Dirac semimetal Cd3As2 microbelts; they have shown ultrahigh mobility up to 1.15 × 10(5) cm(2) V(-1) s(-1) and pronounced Shubnikov-de Haas oscillations. Such extraordinary features are attributed to the suppression of electron backscattering. This research opens a new avenue for the scalable fabrication of Cd3As2 materials toward exciting electronic applications of 3D Dirac semimetals.