Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(1): 101469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871547

RESUMO

α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson's disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.


Assuntos
Amiloide , Amiloidose , Manganês , Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Humanos , Corpos de Lewy/metabolismo , Manganês/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
2.
Biochem Biophys Res Commun ; 603: 13-20, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276458

RESUMO

α-Synuclein (α-Syn) is an aggregation-prone protein whose accumulation in Lewy bodies leads to neurodegenerative diseases like Parkinson's disease (PD). Calcium plays a critical role in neurons, and calcium dysregulation is one of the risk factors of PD. It is known that Ca2+ interacts with α-Syn and affects its assembly. However, how Ca2+ regulates α-Syn aggregation remains unclear. Here, we reported that Ca2+ accelerates α-Syn amyloid aggregation through the modulation of protein phase separation. We observed that Ca2+ promotes the formation of α-Syn liquid droplets but does not change the protein fluidity inside the droplets. Further studies showed Ca2+-involved α-Syn droplets are still able to fuse. A metal chelator eliminated Ca2+-induced enlargement of α-Syn droplets, suggesting the influence of Ca2+ on α-Syn assembly could be reversed at the stage of liquid-liquid phase separation (LLPS). Interestingly, our data showed Ca2+ still promoted α-Syn phase separation in the presence of the lipid membranes. In addition, Ca2+/α-syn droplets could efficiently recruit lipid vesicles to the surface of these condensates. Our findings demonstrate that Ca2+ facilitates α-Syn phase separation to accelerate amyloid aggregation and pave the path for understanding the implications of Ca2+ in α-Syn accumulation and PD.


Assuntos
Amiloidose , Cálcio , Doença de Parkinson , Amiloide/metabolismo , Proteínas Amiloidogênicas , Humanos , Corpos de Lewy/metabolismo , Lipídeos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
3.
Chembiochem ; 23(16): e202200216, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35657723

RESUMO

The aggregation of α-synuclein (α-Syn) is a critical pathological hallmark of Parkinson's disease (PD). Prevention of α-Syn aggregation has become a key strategy for treating PD. Recent studies have suggested that α-Syn undergoes liquid-liquid phase separation (LLPS) to facilitate nucleation and amyloid formation. Here, we examined the modulation of α-Syn aggregation by myricetin, a polyhydroxyflavonol compound, under the conditions of LLPS. Unexpectedly, neither the initial morphology nor the phase-separated fraction of α-Syn was altered by myricetin. However, the dynamics of α-Syn condensates decreased upon myricetin binding. Further studies showed that myricetin dose-dependently inhibits amyloid aggregation in the condensates by delaying the liquid-to-solid phase transition. In addition, myricetin could disassemble the preformed α-Syn amyloid aggregates matured from the condensates. Together, our study shows that myricetin inhibits α-Syn amyloid aggregation in the condensates by retarding the liquid-to-solid phase transition and reveals that α-Syn phase transition can be targeted to inhibit amyloid aggregation.


Assuntos
Amiloidose , Doença de Parkinson , Amiloide/química , Proteínas Amiloidogênicas , Flavonoides/farmacologia , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
4.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980206

RESUMO

Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.


Assuntos
Cálcio , Vesículas Sinápticas , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Cálcio/metabolismo , Humanos , Animais , Vesículas Sinápticas/metabolismo , Multimerização Proteica , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Transição de Fase , Mutação/genética , Células HEK293 , Fusão de Membrana , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Separação de Fases
5.
Biomolecules ; 13(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37238596

RESUMO

The Lewy bodies and Lewy neurites are key pathological hallmarks of Parkinson's disease (PD). Single-point mutations associated with familial PD cause α-synuclein (α-Syn) aggregation, leading to the formation of Lewy bodies and Lewy neurites. Recent studies suggest α-Syn nucleates through liquid-liquid phase separation (LLPS) to form amyloid aggregates in a condensate pathway. How PD-associated mutations affect α-Syn LLPS and its correlation with amyloid aggregation remains incompletely understood. Here, we examined the effects of five mutations identified in PD, A30P, E46K, H50Q, A53T, and A53E, on the phase separation of α-Syn. All other α-Syn mutants behave LLPS similarly to wild-type (WT) α-Syn, except that the E46K mutation substantially promotes the formation of α-Syn condensates. The mutant α-Syn droplets fuse to WT α-Syn droplets and recruit α-Syn monomers into their droplets. Our studies showed that α-Syn A30P, E46K, H50Q, and A53T mutations accelerated the formation of amyloid aggregates in the condensates. In contrast, the α-Syn A53E mutant retarded the aggregation during the liquid-to-solid phase transition. Finally, we observed that WT and mutant α-Syn formed condensates in the cells, whereas the E46K mutation apparently promoted the formation of condensates. These findings reveal that familial PD-associated mutations have divergent effects on α-Syn LLPS and amyloid aggregation in the phase-separated condensates, providing new insights into the pathogenesis of PD-associated α-Syn mutations.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação , Corpos de Lewy/metabolismo , Mutação Puntual , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo
6.
ACS Omega ; 7(34): 30281-30290, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061735

RESUMO

The amyloid aggregation of α-synuclein (α-Syn) is highly associated with Parkinson's disease (PD). Discovering α-Syn amyloid inhibitors is one of the strategies for PD therapies. Recent studies suggested that α-Syn undergoes phase separation to accelerate amyloid aggregation. Molecules modulating α-Syn phase separation or transition have the potential to regulate amyloid aggregation. Here, we discovered that curcumin, a small natural molecule, interacts with α-Syn during phase separation. Our study showed that curcumin neither affects the formation of α-Syn condensates nor influences the initial morphology of α-Syn condensates. However, curcumin decreases the fluidity of α-Syn inside the condensates and efficiently inhibits α-Syn from turning into an amyloid. It also inhibits the amyloid aggregations of PD disease-related α-Syn E46K and H50Q mutants under phase separation. Furthermore, curcumin can destabilize preformed α-Syn amyloid aggregates in the condensates. Together, our findings demonstrate that curcumin regulates α-Syn amyloid formation during protein phase separation and reveal that α-Syn amyloid aggregation under phase separation can be modulated by small molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA