Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114586, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39137113

RESUMO

Our understanding of human fetal cerebellum development during the late second trimester, a critical period for the generation of astrocytes, oligodendrocytes, and unipolar brush cells (UBCs), remains limited. Here, we performed single-cell RNA sequencing (scRNA-seq) in human fetal cerebellum samples from gestational weeks (GWs) 18-25. We find that proliferating UBC progenitors distribute in the subventricular zone of the rhombic lip (RLSVZ) near white matter (WM), forming a layer structure. We also delineate two trajectories from astrogenic radial glia (ARGs) to Bergmann glial progenitors (BGPs) and recognize oligodendrogenic radial glia (ORGs) as one source of primitive oligodendrocyte progenitor cells (PriOPCs). Additionally, our scRNA-seq analysis of the trisomy 21 fetal cerebellum at this stage reveals abnormal upregulated genes in pathways such as the cell adhesion pathway and focal adhesion pathway, which potentially promote neuronal differentiation. Overall, our research provides valuable insights into normal and abnormal development of the human fetal cerebellum.


Assuntos
Cerebelo , Síndrome de Down , Feto , Segundo Trimestre da Gravidez , Humanos , Cerebelo/embriologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Síndrome de Down/genética , Síndrome de Down/patologia , Gravidez , Feminino , Diferenciação Celular , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Neuroglia/metabolismo , Neuroglia/patologia , Regulação da Expressão Gênica no Desenvolvimento
2.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010640

RESUMO

Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood-brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate "water distribution" system in cells, exemplified by astrocytes, under normal and pathological conditions.


Assuntos
Aquaporinas , Astrócitos , Aquaporinas/metabolismo , Astrócitos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA