Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412753, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234796

RESUMO

High-voltage dual ion battery (DIB) is promising for stationary energy storage applications owing to its cost-effectiveness, which has been a hot topic of research in rechargeable battery fields. However, it still suffers from rapid battery failure caused by the severe solvent co-intercalation and electrolyte oxidation. To address these bottlenecks, herein a functional electrolyte additive hexafluoroglutaric anhydride (HFGA) is presented based on a Helmholtz plane regulation strategy. It is demonstrated that the HFGA can precisely enter into the Helmholtz plane and positively regulate anion solvation behaviors near the graphite electrode surface owing to its considerable H-F affinity with ethyl methyl carbonate (EMC), thus alleviating EMC-related co-intercalation and oxidation decomposition during DIB charging. Meanwhile, HFGA can copolymerize with the presence of PF5 at the Helmholtz plane to participate in forming a CF2-rich CEI layer with excellent PF6 - permselectivity, conducive to achieving PF6 - de-solvation and simultaneously suppressing electrolyte oxidation decomposition. By virtue of such beneficial effects, the graphite cathode enables a 5.5 V DIB with a prominent capacity retention of 92 % and a high average Coulombic efficiency exceeding 99 % within 2000 cycles at 5 C, demonstrating significantly enhanced electrochemical reversibility. The Helmholtz plane regulation strategy marks a milestone in advancing DIB technologies.

2.
Angew Chem Int Ed Engl ; 63(34): e202406198, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38864280

RESUMO

As a highly promising next-generation high-specific capacity anode, the industrial-scale utilization of micron silicon has been hindered by the issue of pulverization during cycling. Although numerous studies have demonstrated the effectiveness of regulating the inorganic components of the solid electrolyte interphase (SEI) in improving pulverization, the evolution of most key inorganic components in the SEI and their correlation with silicon failure mechanisms remain ambiguous. This study provides a clear and direct correlation between the lithium hydride (LiH) in the SEI and the degree of micron silicon pulverization in the battery system. The reverse lithiation behavior of LiH on micron silicon during de-lithiation exacerbates the localized stress in silicon particles and contributes to particle pulverization. This work successfully proposes a novel approach to decouple the SEI from electrochemical performance, which can be significant to decipher the evolution of critical SEI components at varied battery anode interfaces and analyze their corresponding failure mechanisms.

3.
Angew Chem Int Ed Engl ; 63(5): e202315710, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078788

RESUMO

High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.

4.
Angew Chem Int Ed Engl ; 63(19): e202400797, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477225

RESUMO

Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly-fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer-organic and inner-inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB- anions tend to integrate into lithium ion solvation structure to form a favorable fast-ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm-2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.

5.
Phys Chem Chem Phys ; 25(36): 24244-24263, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37698006

RESUMO

Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.


Assuntos
Cartilagem , Engenharia Tecidual , Humanos , Materiais Biocompatíveis , Impressão Tridimensional
6.
Angew Chem Int Ed Engl ; 62(31): e202306141, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37282795

RESUMO

The Germanium (Ge), as a fast-charging and high specific capacity (1568 mAh g-1 ) alloy anode, is greatly hampered in practical application by poor cyclability. To date, the understanding of cycling performance degradation remains elusive. This study illustrates that, contrary to conventional beliefs, most of the Ge material in failed anodes still retains good integrity and does not undergo severe pulverization. It is revealed that capacity degradation is clearly correlated to the interfacial evolution of lithium hydride (LiH). Tetralithium germanium hydride (Li4 Ge2 H), as a new species derived from LiH, is identified as the culprit of Ge anode degradation, which is the dominant crystalized component in an ever-growing and ever-insulating interphase. The significantly increased thickness of the solid electrolyte interface (SEI) is accompanied by the accumulation of insulating Li4 Ge2 H upon cycling, which severely retards the charge transport process and ultimately triggers the anode failure. We believe that the comprehensive understanding of the failure mechanism presented in this study is of great significance to promoting the design and development of alloy anode for the next generation of lithium-ion batteries.

7.
Angew Chem Int Ed Engl ; 62(34): e202302664, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37349889

RESUMO

Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2 ). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2 /graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs.

8.
Waste Manag Res ; 40(4): 383-392, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34877894

RESUMO

The increase in landfill temperature often results in shear strength reduction of both the solid waste and the liner, which leads to slope instability. However, very few landfill slope analysis methods can simultaneously consider the effect of temperature on the shear strength of the waste solid and the liner. In this study, based on the strength parameters of the liner and waste with temperature, a wedge method for translational failure analysis of landfills considering temperature increase was established. The results showed that rising temperatures caused by biochemical degradation at the bottom and middle of the landfill reduced the anti-slide force of back slope more than that of bottom slope. With the leachate level increasing, the effect of temperature rise on landfill stability became obvious. The feasibility of the proposed wedge method was verified by the engineering case study of Xiaping Landfill, Shenzhen, China. This study probably provides important guidance for the design, operation and management of municipal solid waste landfills.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Resistência ao Cisalhamento , Resíduos Sólidos/análise , Temperatura , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
9.
Waste Manag Res ; 39(2): 351-359, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32933451

RESUMO

Slope instability occurs in landfills owing to increased internal temperatures. However, strength characteristic tests for solid waste (SW) and landfill slope stability (SS) calculations that consider temperature variations are scarce in the literature. In this study, we conducted triaxial tests on SW under a range of temperature conditions and proposed the circular slide method (CSM) for calculating SS in consideration of temperature effects. SW cohesion decreased linearly with increasing temperature, whereas the internal friction angle remained essentially unchanged. Our results showed that higher temperatures reduced the SW shear strength, changing the most dangerous sliding arc away from the slope toe. The landfill slope safety factor decreased by more than 20% with an increase of the maximum temperature from 20°C to 50°C. Reduction of the leachate level (LL) led to a decrease in the landfill high-temperature zone and the safety factor increased according to LL and temperature distribution. If cooling pipes are used to control the SW temperature, we recommend arranging the cooling pipes on the landfill liner. The proposed CSM can be used to analyse landfill SS.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resistência ao Cisalhamento , Resíduos Sólidos/análise , Temperatura , Instalações de Eliminação de Resíduos
10.
Angew Chem Int Ed Engl ; 60(14): 7770-7776, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33470042

RESUMO

Discovering the underlying reason for Li anode failure is a critical step towards applications of lithium metal batteries (LMBs). In this work, we conduct deuterium-oxide (D2 O) titration experiments in a novel on-line gas analysis mass spectrometry (MS) system, to determine the content of metallic Li and lithium hydride (LiH) in cycled Li anodes disassembled from practical LiCoO2 /Li LMBs. The practical cell is comprised of ultrathin Li anode (50 µm), high loading LiCoO2 (17 mg cm-2 , 2.805 mAh cm-2 ) and different formulated electrolytes. Our results suggest that the amount of LiH accumulation is negatively correlated with cyclability of practical LMBs. More importantly, we reveal a temperature sensitive equilibrium (Li + 1/2 H2 ⇌ LiH) governing formation and decomposition process of LiH at Li anode. We believe that the unusual understanding provided by this study will draw forth more insightful efforts to realize efficient Li protection and the ultimate applications of "holy grail" LMBs.

11.
Angew Chem Int Ed Engl ; 59(9): 3400-3415, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31332946

RESUMO

Blended-salt electrolytes showing synergistic effects have been formulated by simply mixing several lithium salts in an electrolyte. In the burgeoning field of next-generation lithium batteries, blended-salt electrolytes have enabled great progress to be made. In this Review, the development of such blended-salt electrolytes is examined in detail. The reasons for formulating blended-salt electrolytes for lithium batteries include improvement of thermal stability (safety), inhibition of aluminum-foil corrosion of the cathode current collector, enhancement of performance over a wide temperature range (or at a high or low temperature), formation of favorable interfacial layers on both electrodes, protection of the lithium metal anode, and attainment of high ionic conductivity. Herein, we highlight key scientific issues related to the formulation of blended-salt electrolytes for lithium batteries.

12.
Small ; 15(16): e1900269, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30848874

RESUMO

In this study, self-synthesized lithium trifluoro(perfluoro-tert-butyloxyl)borate (LiTFPFB) is combined with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to formulate a novel 1 m dual-salt electrolyte, which contains lithium difluorophosphate (LiPO2 F2 ) additive and dominant carbonate solvents with low melting point and high boiling point. The addition of LiPO2 F2 into this novel dual-salt electrolyte dramatically improves cycleability and rate capability of a LiNi0.5 Mn0.3 Co0.2 O2 /Li (NMC/Li) battery, ranging from -40 to 90 °C. The NMC/Li batteries adopt a Li-metal anode with low thickness of 100 µm (even 50 µm) and a moderately high cathode mass loading level of 10 mg cm-2 . For the first time, this paper provides valuable perspectives for developing practical lithium-metal batteries over a wide temperature range.

13.
BMC Complement Altern Med ; 19(1): 295, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694615

RESUMO

BACKGROUND: NGF-TrkA is well known to play a key role in propagating and sustaining pruritogenic signals, which form the pathology of chronic pruritus. Inhibition of NGF-TrkA is a known strategy for the treatment of pruritus. In the present paper, we describe the identification, in vitro characterization, structure-activity analysis, and inhibitory evaluation of a novel TrkA inhibitory scaffold exemplified by Cucurbitacins (Cus). METHODS: Cus were identified as TrkA inhibitors in a large-scale kinase library screen. To obtain structural models of Cus as TrkA inhibitors, AutoDock was used to explore their binding to TrkA. Furthermore, PC12 cell culture systems have been used to study the effects of Cus and traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) extracts on the kinase activity of TrkA. RESULTS: Cus block the phosphorylation of TrkA on several tyrosine sites, including Tyr490, Tyr674/675, and Tyr785, and inhibit downstream Akt and MAPK phosphorylation in response to NGF in PC12 cell model systems. Furthermore, traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) containing Cu extracts were shown to inhibit the phosphorylation of TrkA and Akt. These data reveal mechanisms, at least partly, of the anti-pruritus bioactivity of Cus. CONCLUSION: Taken together, with the recent discovery of the important role of TrkA as a therapeutic target, Cus could be the basis for the design of improved TrkA kinase inhibitors, which could someday help treat pruritus.


Assuntos
Cucumis melo/química , Cucurbitacinas/química , Inibidores Enzimáticos/química , Momordica charantia/química , Extratos Vegetais/química , Receptor trkA/antagonistas & inibidores , Motivos de Aminoácidos , Animais , Frutas/química , Humanos , Cinética , Fator de Crescimento Neural/metabolismo , Células PC12 , Fosforilação , Ratos , Receptor trkA/química
14.
Nanotechnology ; 29(29): 295605, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29726408

RESUMO

A facial method of fabricating methyl-modified silica nanobowl using a polystyrene template with tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) as co-precursors was reported. The morphology of the nanobowl was determined by the mole ratio of TEOS and MTES, and the size and shell thickness of the PS@SiO2. And the 2D ordered nanostructure has also been developed with a nanobowl opening perpendicular to the glass substrate surface by the Langmuir-Blodgett technique. These 2D ordered nanobowl structures present an adjustable antireflection property. The single-side nanobowl coating has a transmission improvement of 4.5% compared to the uncoated glass at a wavelength of 540 nm. Furthermore, the nanobowl structures have good hydrophobicity with a contact angle up to 130° without any additional treatment. The quantitative deformation behavior of the methyl-modified silica nanobowl was also discussed.

15.
Phys Chem Chem Phys ; 17(33): 21158-63, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25483919

RESUMO

A structure of hexadecyl trimethyl ammonium bromide (CTAB) micelle-assisted reduced graphene oxide-Ag nanoparticle (rGO-AgNP) hybrids is designed and fabricated for SERS detection of nonpolar polycyclic aromatic hydrocarbons (PAHs), in which CTAB micelles act as the host material to capture PAH molecules. This method provides stable aqueous suspensions of functionalized graphene with an alkyl chain, since the rGO-AgNP hybrids do not need to be pre-modified by CTAB. The result shows that the CTAB-assisted rGO-AgNP substrate has excellent SERS performance toward PAHs and ideal stability under continuous laser radiation. With further optimization, the detection limits of pyrene and perylene were 10(-6) M and 10(-7) M, respectively. Two different PAH molecules could be detected simultaneously by their characteristic peaks.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Micelas , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise Espectral Raman , Cetrimônio , Compostos de Cetrimônio/química , Óxidos/química , Perileno/análise , Espectroscopia Fotoeletrônica , Pirenos/análise , Prata/química
16.
Adv Sci (Weinh) ; 11(7): e2305753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044323

RESUMO

High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF6 -carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6 -carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.

17.
ACS Appl Mater Interfaces ; 16(37): 48792-48802, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38149481

RESUMO

Polymer electrolytes (PEs) with excellent flexibility and superior compatibility toward lithium (Li) metal anodes have been deemed as one of the most promising alternatives to liquid electrolytes. However, conventional lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based dual-ion PEs suffer from a low Li ion transference number and notorious Li dendrite growth. Here, a single-ion conducting polyborate salt without any fluorinated groups, polymeric lithium dihydroxyterephthalic acid borate (PLDPB), is presented for addressing the issues of Li metal batteries. Owing to a nearly immovable bulky anion and the presence of a rigid benzene structure, the PLDPB@poly(ethylene oxide) (PEO) PE exhibits an ultrahigh Li ion transference number (0.94) and excellent mechanical strength, which could significantly restrict the growth of Li dendrites. Postmortem analysis reveals that a fluorine-free solid electrolyte interphase (SEI) enriched with B-O and benzene-containing species is formed on the surface of the Li metal anode, thereby facilitating elimination of excessive parasitic reactions and simultaneously suppressing the formation of Li dendrites. Consequently, the LiFePO4/Li cells with PLDPB@PEO PEs show an improved long-term cycling performance and high capacity retention (90.0%) and Coulombic efficiency (99.9%) after 500 cycles. This work may inspire new ideas to boost the development of single-ion conducting salts for dendrite-free Li metal batteries.

18.
CNS Neurosci Ther ; 30(10): e70061, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392762

RESUMO

BACKGROUND: Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS: We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS: Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1ß, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1ß, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS: IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.


Assuntos
Inflamassomos , Interferon gama , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição STAT1 , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interferon gama/farmacologia , Fator de Transcrição STAT1/metabolismo , Camundongos , Inflamassomos/metabolismo , Células Cultivadas , Masculino , Lipopolissacarídeos/farmacologia
19.
Adv Mater ; 36(26): e2400737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572792

RESUMO

Electrode crosstalk between anode and cathode at elevated temperatures is identified as a real culprit triggering the thermal runaway of lithium-ion batteries. Herein, to address this challenge, a novel smart polymer electrolyte is prepared through in situ polymerization of methyl methacrylate and acrylic anhydride monomers within a succinonitrile-based dual-anion deep eutectic solvent. Owing to the abundant active unsaturated double bonds on the as-obtained polymer matrix end, this smart polymer electrolyte can spontaneously form a dense crosslinked polymer network under elevated temperatures, effectively slowing down the crosstalk diffusion kinetics of lithium ions and active gases. Impressively, LiCoO2/graphite pouch cells employing this smart polymer electrolyte demonstrate no thermal runaway even at the temperature up to 250 °C via accelerating rate calorimeter testing. Meanwhile, because of its abundance of functional motifs, this smart polymer electrolyte can facilitate the formation of stable and thermally robust electrode/electrolyte interface on both electrodes, ensuring the long cycle life and high safety of LIBs. In specific, this smart polymer electrolyte endows 1.1 Ah LiCoO2/graphite pouch cell with a capacity retention of 96% after 398 cycles at 0.2 C.

20.
Int Immunopharmacol ; 134: 112191, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759369

RESUMO

Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1ß, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.


Assuntos
Hipocampo , Interferon gama , Camundongos Endogâmicos C57BL , Microglia , Fator de Transcrição STAT1 , Transdução de Sinais , Comportamento Social , Animais , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Masculino , Interferon gama/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Memória/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA