Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859600

RESUMO

BACKGROUND: Traditional biopsies pose risks and may not accurately reflect soft tissue sarcoma (STS) heterogeneity. MRI provides a noninvasive, comprehensive alternative. PURPOSE: To assess the diagnostic accuracy of histological grading and prognosis in STS patients when integrating clinical-imaging parameters with deep learning (DL) features from preoperative MR images. STUDY TYPE: Retrospective/prospective. POPULATION: 354 pathologically confirmed STS patients (226 low-grade, 128 high-grade) from three hospitals and the Cancer Imaging Archive (TCIA), divided into training (n = 185), external test (n = 125), and TCIA cohorts (n = 44). 12 patients (6 low-grade, 6 high-grade) were enrolled into prospective validation cohort. FIELD STRENGTH/SEQUENCE: 1.5 T and 3.0 T/Unenhanced T1-weighted and fat-suppressed-T2-weighted. ASSESSMENT: DL features were extracted from MR images using a parallel ResNet-18 model to construct DL signature. Clinical-imaging characteristics included age, gender, tumor-node-metastasis stage and MRI semantic features (depth, number, heterogeneity at T1WI/FS-T2WI, necrosis, and peritumoral edema). Logistic regression analysis identified significant risk factors for the clinical model. A DL clinical-imaging signature (DLCS) was constructed by incorporating DL signature with risk factors, evaluated for risk stratification, and assessed for progression-free survival (PFS) in retrospective cohorts, with an average follow-up of 23 ± 22 months. STATISTICAL TESTS: Logistic regression, Cox regression, Kaplan-Meier curves, log-rank test, area under the receiver operating characteristic curve (AUC),and decision curve analysis. A P-value <0.05 was considered significant. RESULTS: The AUC values for DLCS in the external test, TCIA, and prospective test cohorts (0.834, 0.838, 0.819) were superior to clinical model (0.662, 0.685, 0.694). Decision curve analysis showed that the DLCS model provided greater clinical net benefit over the DL and clinical models. Also, the DLCS model was able to risk-stratify patients and assess PFS. DATA CONCLUSION: The DLCS exhibited strong capabilities in histological grading and prognosis assessment for STS patients, and may have potential to aid in the formulation of personalized treatment plans. TECHNICAL EFFICACY: Stage 2.

2.
Quant Imaging Med Surg ; 14(4): 2993-3005, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617165

RESUMO

Background: It is crucial to distinguish unstable from stable intracranial aneurysms (IAs) as early as possible to derive optimal clinical decision-making for further treatment or follow-up. The aim of this study was to investigate the value of a deep learning model (DLM) in identifying unstable IAs from computed tomography angiography (CTA) images and to compare its discriminatory ability with that of a conventional logistic regression model (LRM). Methods: From August 2011 to May 2021, a total of 1,049 patients with 681 unstable IAs and 556 stable IAs were retrospectively analyzed. IAs were randomly divided into training (64%), internal validation (16%), and test sets (20%). Convolutional neural network (CNN) analysis and conventional logistic regression (LR) were used to predict which IAs were unstable. The area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the discriminating ability of the models. One hundred and ninety-seven patients with 229 IAs from Banan Hospital were used for external validation sets. Results: The conventional LRM showed 11 unstable risk factors, including clinical and IA characteristics. The LRM had an AUC of 0.963 [95% confidence interval (CI): 0.941-0.986], a sensitivity, specificity and accuracy on the external validation set of 0.922, 0.906, and 0.913, respectively, in predicting unstable IAs. In predicting unstable IAs, the DLM had an AUC of 0.771 (95% CI: 0.582-0.960), a sensitivity, specificity and accuracy on the external validation set of 0.694, 0.929, and 0.782, respectively. Conclusions: The CNN-based DLM applied to CTA images did not outperform the conventional LRM in predicting unstable IAs. The patient clinical and IA morphological parameters remain critical factors for ensuring IA stability. Further studies are needed to enhance the diagnostic accuracy.

3.
World J Gastroenterol ; 28(29): 3960-3970, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36157536

RESUMO

BACKGROUND: Tumor deposits (TDs) are not equivalent to lymph node (LN) metastasis (LNM) but have become independent adverse prognostic factors in patients with rectal cancer (RC). Although preoperatively differentiating TDs and LNMs is helpful in designing individualized treatment strategies and achieving improved prognoses, it is a challenging task. AIM: To establish a computed tomography (CT)-based radiomics model for preoperatively differentiating TDs from LNM in patients with RC. METHODS: This study retrospectively enrolled 219 patients with RC [TDs+LNM- (n = 89); LNM+ TDs- (n = 115); TDs+LNM+ (n = 15)] from a single center between September 2016 and September 2021. Single-positive patients (i.e., TDs+LNM- and LNM+TDs-) were classified into the training (n = 163) and validation (n = 41) sets. We extracted numerous features from the enhanced CT (region 1: The main tumor; region 2: The largest peritumoral nodule). After deleting redundant features, three feature selection methods and three machine learning methods were used to select the best-performing classifier as the radiomics model (Rad-score). After validating Rad-score, its performance was further evaluated in the field of diagnosing double-positive patients (i.e., TDs+LNM+) by outlining all peritumoral nodules with diameter (short-axis) > 3 mm. RESULTS: Rad-score 1 (radiomics signature of the main tumor) had an area under the curve (AUC) of 0.768 on the training dataset and 0.700 on the validation dataset. Rad-score 2 (radiomics signature of the largest peritumoral nodule) had a higher AUC (training set: 0.940; validation set: 0.918) than Rad-score 1. Clinical factors, including age, gender, location of RC, tumor markers, and radiological features of the largest peritumoral nodule, were excluded by logistic regression. Thus, the combined model was comprised of Rad-scores of 1 and 2. Considering that the combined model had similar AUCs with Rad-score 2 (P = 0.134 in the training set and 0.594 in the validation set), Rad-score 2 was used as the final model. For the diagnosis of double-positive patients in the mixed group [TDs+LNM+ (n = 15); single-positive (n = 15)], Rad-score 2 demonstrated moderate performance (sensitivity, 73.3%; specificity, 66.6%; and accuracy, 70.0%). CONCLUSION: Radiomics analysis based on the largest peritumoral nodule can be helpful in preoperatively differentiating between TDs and LNM.


Assuntos
Extensão Extranodal , Neoplasias Retais , Humanos , Biomarcadores Tumorais , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/patologia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Estudos Retrospectivos
4.
Front Oncol ; 12: 897676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814362

RESUMO

Objectives: To build and evaluate a deep learning radiomics nomogram (DLRN) for preoperative prediction of lung metastasis (LM) status in patients with soft tissue sarcoma (STS). Methods: In total, 242 patients with STS (training set, n=116; external validation set, n=126) who underwent magnetic resonance imaging were retrospectively enrolled in this study. We identified independent predictors for LM-status and evaluated their performance. The minimum redundancy maximum relevance (mRMR) method and least absolute shrinkage and selection operator (LASSO) algorithm were adopted to screen radiomics features. Logistic regression, decision tree, random forest, support vector machine (SVM), and adaptive boosting classifiers were compared for their ability to predict LM. To overcome the imbalanced distribution of the LM data, we retrained each machine-learning classifier using the synthetic minority over-sampling technique (SMOTE). A DLRN combining the independent clinical predictors with the best performing radiomics prediction signature (mRMR+LASSO+SVM+SMOTE) was established. Area under the receiver operating characteristics curve (AUC), calibration curves, and decision curve analysis (DCA) were used to assess the performance and clinical applicability of the models. Result: Comparisons of the AUC values applied to the external validation set revealed that the DLRN model (AUC=0.833) showed better prediction performance than the clinical model (AUC=0.664) and radiomics model (AUC=0.799). The calibration curves indicated good calibration efficiency and the DCA showed the DLRN model to have greater clinical applicability than the other two models. Conclusion: The DLRN was shown to be an accurate and efficient tool for LM-status prediction in STS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA