Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Radiol ; 65(6): 609-615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38204189

RESUMO

BACKGROUND: When high tibial osteotomy is performed for genu varus deformity, it is not easy to determine the accurate placement of the plate. PURPOSE: To determine a simple way to assess the position of the plate, to provide more effective mechanical support and to reduce the risk of implant rupture and vascular injury. MATERIAL AND METHODS: Two human anatomical marks, the patellar ligament and semimembranosus, were connected and divided into four parts to identify points Ⅰ, Ⅱ, and Ⅲ. These points determined the areas for Tomofix placement: anterior, anterolateral, and lateral. Simulated internal fixation placed hole B of Tomofix at points Ⅰ (anterior), Ⅱ (anterolateral), and Ⅲ (lateral). We analyzed the pointing direction of the locking screws in Tomofix holes on MRI to assess potential injury risk to the popliteal neurovascular bundle. RESULTS: In the X-ray: holes B and C appeared as the plate in the anterior, only hole C appeared as the plate in the anterolateral, and none of the holes appeared as the plate in the lateral. In the general view of the sawbones, the screw pointed towards the popliteal neurovascular bundle when the plate was in the anterior. CONCLUSION: If a small number of holes on the plate is visible under fluoroscopy, then several lateral positions of the plate can be obtained; the direction of the screw tunnel tends to deviate from the popliteal neurovascular bundle with the posterior position of the plate.


Assuntos
Placas Ósseas , Osteotomia , Tíbia , Humanos , Osteotomia/métodos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Imageamento por Ressonância Magnética/métodos , Parafusos Ósseos
2.
Regen Biomater ; 11: rbad113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225955

RESUMO

This study presents the development and evaluation of a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) ultrafine fiber slow-release system for in vivo osteogenic induction of human umbilical cord mesenchymal stem cells (HUCMSCs). Utilizing dual-nozzle and cell electrospinning techniques, the system encapsulates L-ascorbic acid-2-phosphate magnesium (ASP), ß-glycerophosphate sodium and dexamethasone (DEX) within the fibers, ensuring sustained osteogenic differentiation. The scaffold's morphology, characterization, hydrophilicity, mechanical properties and cellular behavior were examined. Immediate subcutaneous implantation in rabbits was conducted to observe its ectopic osteogenic induction effect. Successfully fabricated P34HB ultrafine fiber slow-release system. Characterization confirmed the uniform distribution of HUCMSCs and inducing components within the scaffold, with no chemical reactions affecting the active components. In vitro tests showcased a prolonged release of DEX and ASP, while biocompatibility assays highlighted the scaffold's suitability for cellular growth. Alizarin Red, type I collagen, and osteopontin (OPN) staining verified the scaffold's potent osteogenic induction effect on HUCMSCs. Notably, immediate implantation into New Zealand White rabbits led to significant new bone formation within 8 weeks. These findings underscore the system's potential for immediate in vivo implantation without prior in vitro induction, marking a promising advancement in bone tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA