Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2209829120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37200363

RESUMO

Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonsymmetric wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate and experimentally demonstrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.

2.
Phys Rev Lett ; 125(25): 253901, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416374

RESUMO

Research on breaking time-reversal symmetry to realize one-way wave propagation is a growing area in photonic and phononic crystals and metamaterials. In this Letter, we present physical realization of an acoustic waveguide with spatiotemporally modulated boundary conditions to realize nonreciprocal transport and acoustic topological pumping. The modulated waveguide inspired by a water wheel consists of a helical tube rotating around a slotted tube at a controllable speed. The rotation of the helical tube creates moving boundary conditions for the exposed waveguide sections at a constant speed. We experimentally demonstrate acoustic nonreciprocity and topologically robust bulk-edge correspondences for this system, which is in good agreement with analytical and numerical predictions. The nonreciprocal waveguide is a one-dimensional analog to the two-dimensional quantum Hall effect for acoustic circulators and is characterized by a robust integer-valued Chern number. These findings provide insight into practical implications of topological modes in acoustics and the implementation of higher-dimensional topological acoustics where time serves as a synthetic dimension.

3.
Phys Rev Lett ; 124(11): 114301, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242717

RESUMO

An elastic cloak is a coating material that can be applied to an arbitrary inclusion to make it indistinguishable from the background medium. Cloaking against elastic disturbances, in particular, has been demonstrated using several designs and gauges. None, however, tolerate the coexistence of normal and shear stresses due to a shortage of physical realization of transformation-invariant elastic materials. Here, we overcome this limitation to design and fabricate a new class of polar materials with a distribution of body torque that exhibits asymmetric stresses. A static cloak for full two-dimensional elasticity is thus constructed based on the transformation method. The proposed cloak is made of a functionally graded multilayered lattice embedded in an isotropic continuum background. While one layer is tailored to produce a target elastic behavior, the other layers impose a set of kinematic constraints equivalent to a distribution of body torque that breaks the stress symmetry. Experimental testing under static compressive and shear loads demonstrates encouraging cloaking performance in good agreement with our theoretical prediction. The work sets a precedent in the field of transformation elasticity and should find applications in mechanical stress shielding and stealth technologies.

4.
J Acoust Soc Am ; 135(4): 1686-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25234968

RESUMO

A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.

5.
Sci Adv ; 9(1): eadf0575, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608138

RESUMO

Liquid metal-elastomer composite is a promising soft conductor for skin-interfaced bioelectronics, soft robots, and others due to its large stretchability, ultrasoftness, high electrical conductivity, and mechanical-electrical decoupling. However, it often suffers from deformation-induced leakage, which can smear skin, deteriorate device performance, and cause circuit shorting. Besides, antimicrobial property is desirable in soft conductors to minimize microbial infections. Here, we report phase separation-based synthesis of porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property, together with large stretchability, tissue-like compliance, high and stable electrical conductivity over deformation, high breathability, and magnetic resonance imaging compatibility. The porous structures can minimize leakage through damping effects and lower percolation thresholds to reduce liquid metal usage. In addition, epsilon polylysine is loaded into elastic matrices during phase separation to provide antimicrobial property. The enabled skin-interfaced bioelectronics can monitor cardiac electrical and mechanical activities and offer electrical stimulations in a mechanically imperceptible and electrically stable manner even during motions.

6.
ACS Appl Mater Interfaces ; 12(11): 13378-13385, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100524

RESUMO

We reported a soft-stiff hybridized polymeric film that can self-morph to dedicated three-dimensional (3D) structures for application in acoustic metamaterials. The hybridized film was fabricated by laterally adhering a soft and responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel to stiff and passive SU-8 patterns. Upon thermal stimulation, deformation of the tough PNIPAM hydrogel was locally constrained by the stiff SU-8 patterns, thereby causing laterally nonuniform strain to their interfaces for mechanically buckling the hybridized films to 3D structures. Combined with finite element analysis, we demonstrated that the stiff SU-8 patterns effectively alleviated the uncontrollability and uncertainty during the self-morphing process, which was caused by unexpected mutual deformation between the active and passive domains in the self-morphing materials. Therefore, deterministic self-buckling to dedicated 3D structures was physically realized such as a wave-shaped peak-valley structure, 3D checkerboard patterns, and Gaussian curved surfaces from the hybridized polymeric films. Finally, we demonstrated that the self-morphed 3D structures with predesigned patterns can be used as acoustic materials for subwavelength noise control. This transformative way of constructing 3D structures by self-morphing of the hybridized polymeric films will be a substantial progress in fabricating smart and multifunctional materials for widespread applications in metamaterials, soft robotics, and 3D electronics.

7.
ACS Appl Mater Interfaces ; 12(3): 4014-4021, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31872759

RESUMO

Herein, we demonstrate reprogrammable 3D structures that are assembled from elastic composite sheets made from elastic materials and phase change microparticles. By controlling the phase change of the microparticles by localized thermal patterning, anisotropic residual strain is generated in the pre-stretched composite sheets and then triggers 3D structure assembly when the composite sheets are released from the external stress. Modulation of the geometries and location of the thermal patterns leads to complex 2D-3D shaping behaviors such as bending, folding, buckling, and wrinkling. Because of the reversible phase change of the microparticles, these programmed 3D structures can later be recovered to 2D sheets once they are heated for reprogramming different 3D structures. To predict the 3D structures assembled from the 2D composite sheets, finite element modeling was employed, which showed reasonable agreement with the experiments. The demonstrated strategy of reversibly programming 3D shapes by controlling the phase change microstructures in the elastic composites offers unique capabilities in fabricating functional devices such as a rewritable "paper" and a shape reconfigurable pneumatic actuator.

8.
Biosens Bioelectron ; 105: 109-115, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29358111

RESUMO

Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities.


Assuntos
Técnicas Biossensoriais/instrumentação , Encéfalo/fisiologia , Grafite/química , Neurônios/fisiologia , Transistores Eletrônicos , Animais , Encéfalo/citologia , Encéfalo/fisiopatologia , Eletrodos Implantados , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Desenho de Equipamento , Análise de Elementos Finitos , Neurônios/patologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA