Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(43): e2304146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356048

RESUMO

The quantum phase transition caused by regulating the electronic correlation in strongly correlated quantum materials has been a research hotspot in condensed matter science. Herein, a photon-induced quantum phase transition from the Kondo-Mott insulating state to the low temperature metallic one accompanying with the magnetoresistance changing from negative to positive in the infinite-layer NdNiO2 films is reported, where the antiferromagnetic coupling among the Ni1+ localized spins and the Kondo effect are effectively suppressed by manipulating the correlation of Ni-3d and Nd-5d electrons under the photoirradiation. Moreover, the critical temperature Tc of the superconducting-like transition exhibits a dome-shaped evolution with the maximum up to ≈42 K, and the electrons dominate the transport process proved by the Hall effect measurements. These findings not only make the photoinduction a promising way to control the quantum phase transition by manipulating the electronic correlation in Mott-like insulators, but also shed some light on the possibility of the superconducting in electron-doped nickelates.

2.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157583

RESUMO

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

3.
Nano Lett ; 22(6): 2177-2186, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239344

RESUMO

Strong exciton-plasmon interactions between layered two-dimensional (2D) semiconductors and gap plasmons show a great potential to implement cavity quantum electrodynamics under ambient conditions. However, achieving a robust plasmon-exciton coupling with nanocavities is still very challenging, because the layer area is usually small in the conventional approaches. Here, we report on a robust strong exciton-plasmon coupling between the gap mode of a bowtie and the excitons in MoS2 layers with gold-assisted mechanical exfoliation and nondestructive wet transfer techniques for a large-area layer. Due to the ultrasmall mode volume and strong in-plane field, the estimated effective exciton number contributing to the coupling is largely reduced. With a corrected exciton transition dipole moment, the exciton numbers are extracted as being 40 for the case of a single layer and 48 for eight layers. Our work paves the way to realize strong coupling with 2D materials with a small number of excitons at room temperature.

4.
Small ; 18(10): e2106029, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35266315

RESUMO

Monolayer transition metal dichalcogenides have attracted great attention for potential applications in valleytronics. However, the valley polarization degree is usually not high because of the intervalley scattering. Here, a largely enhanced valley polarization up to 80% in monolayer WS2 under nonresonant excitation at 4.2 K is demonstrated using WS2 /LaMnO3 thin film heterostructure, which is much higher than that for monolayer WS2 on SiO2 /Si substrate with a valley polarization of 15%. Furthermore, the greatly enhanced valley polarization can be maintained to a high temperature of about 160 K with a valley polarization of 53%. The temperature dependence of valley polarization is strongly correlated with the thermomagnetic curve of LaMnO3 , indicating an exciton-magnon coupling between WS2 and LaMnO3 . A simple model is introduced to illustrate the underlying mechanisms. The coupling of WS2 and LaMnO3 is further confirmed with an observation of two interlayer excitons with opposite valley polarizations in the heterostructure, resulting from the spin-orbit coupling induced splitting of the conduction bands in monolayer transition metal dichalcogenides. The results provide a pathway to control the valleytronic properties of transition metal dichalcogenides by means of ferromagnetic van der Waals engineering, paving a way to practical valleytronic applications.

5.
Opt Express ; 29(10): 14231-14244, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985147

RESUMO

We report on controllable cavity modes by controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the changing angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Interactions between single quantum dots and cavity modes are then investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and flexible design of the size, the location, the quantity and the shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.

6.
Opt Express ; 29(19): 30735-30750, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614794

RESUMO

The second-order topological photonic crystal with the 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of the topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of the corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of the corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for further investigations and applications of the topological corner state, such as the investigation of a strong coupling regime and the development of optical devices for topological nanophotonic circuitry.

7.
Phys Rev Lett ; 122(8): 087401, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932617

RESUMO

Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity-quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210 µeV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation.

8.
Small ; 14(17): e1704429, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29611286

RESUMO

Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and nonradiative recombination centers. Here, self-catalyzed p-type GaAs nanowires (NWs) with a pure zinc blende (ZB) structure are first developed, and then a photodetector made from these NWs is fabricated. Due to the absence of stacking faults and suppression of large amount of defects with deep energy levels, the photodetector exhibits room-temperature high photoresponsivity of 1.45 × 105 A W-1 and excellent specific detectivity (D*) up to 1.48 × 1014 Jones for a low-intensity light signal of wavelength 632.8 nm, which outperforms previously reported NW-based photodetectors. These results demonstrate these self-catalyzed pure-ZB GaAs NWs to be promising candidates for optoelectronics applications.

9.
Phys Rev Lett ; 120(21): 213901, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883144

RESUMO

Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 µeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

10.
Nano Lett ; 16(2): 1237-43, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26708002

RESUMO

The influences of droplet size on the growth of self-catalyzed ternary nanowires (NWs) were studied using GaAsP NWs. The size-induced Gibbs-Thomson (GT) effect makes the smaller catalytic droplets have lower effective supersaturations and hence slower nucleation rates than the larger ones. Large variation in droplet size thus led to the growth of NWs with low uniformity, while a good size uniformity of droplets resulted in the production of highly uniform NWs. Moreover, thinner NWs were observed to be richer in P, indicating that P is more resistant to the GT effect than As because of a higher chemical potential inside Ga droplets. These results provide useful information for understanding the mechanisms of self-catalyzed III-V NW nucleation and growth with the important ternary III-V material systems.

11.
Opt Express ; 23(7): 9211-20, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968755

RESUMO

We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a pumping source in one waveguide, which can be read out by another waveguide. Finally, we demonstrate that the designed structure can be used for ultrafast optical switching with a time scale of a few picoseconds.

12.
RSC Adv ; 14(9): 5812-5816, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362072

RESUMO

In this study, we report the observation of various conduction mechanisms in mechanically exfoliated PbSnSe2 based on temperature-dependent current and voltage characteristics. A transition from direct tunneling to Fowler-Nordheim tunneling in PbSnSe2 was observed at 2.63 V. At lower temperatures, the 3D Mott variable range hopping model fits the data, yielding a density of states of ∼8.80 × 1020 eV-1 cm-3 at 2 V. The values of Whop and Rhop were 64 meV and 22.7 nm, respectively, at 250 K. The Poole-Frenkel conduction was observed in the Au/PbSnSe2/Au device and the dielectric constant of PbSnSe2 was calculated to be 1.4. At intermediate voltages, a space charge limited current with an exponential distribution of traps was observed and a trap density of ∼9.53 × 1013 cm-3 and a trap characteristic temperature of 430 K were calculated for the Au/PbSnSe2/Au device.

13.
Adv Sci (Weinh) ; 11(32): e2307571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923859

RESUMO

The demand for low-dimensional ferroelectric devices is steadily increasing, however, the thick substrates in epitaxial films impede further size miniaturization. Freestanding films offer a potential solution by eliminating substrate constraints. Nevertheless, it remains an ongoing challenge to improve the stability in thin and fragile freestanding films under strain and temperature. In this work, the structure and ferroelectric order of freestanding PbTiO3 (PTO) films are investigated under continuous variation of the strain and temperature using nondestructive optical second harmonic generation (SHG) technique. The findings reveal that there are both out-of-plane and in-plane domains with polarization along out-of-plane and in-plane directions in the orthorhombic-like freestanding PTO films, respectively. In contrast, only out-of-plane domains are observed in the tetragonal epitaxial PTO films. Remarkably, the ferroelectricity of freestanding PTO films is strengthened under small uniaxial tensile strain from 0% up to 1.66% and well-maintained under larger biaxial tensile strain up to 2.76% along the [100] direction and up to 4.46% along the [010] direction. Moreover, a high Curie temperature of 630 K is identified in 50 nm thick freestanding PTO films by wide-temperature-range SHG. These findings provide valuable understanding for the development of the next-generation electronic nanodevices with flexibility and thermostability.

14.
Sci Adv ; 10(20): eado1281, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748802

RESUMO

The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.

15.
Artigo em Zh | MEDLINE | ID: mdl-24818417

RESUMO

The merozoite surface protein-3alpha of Plasmodium vivax (PvMSP-3alpha) is a surface protein that is expressed during the asexual blood stages. With a high polymorphism, PvMSP-3alpha gene has been used as a suitable epidemiology and genotype marker. Moreover, it might be an important malaria vaccine candidate. This paper summarizes the research progress on the molecular structure, gene polymorphism and genotypes of PvMSP-3alpha.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Genótipo
16.
J Phys Chem Lett ; 14(3): 825-831, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36655858

RESUMO

Two-dimensional ferromagnetic Weyl half-metals that are robust against spin-orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin-orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin-orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology.

17.
Nat Commun ; 14(1): 4265, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460549

RESUMO

Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe2 monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.

18.
Nat Commun ; 14(1): 2274, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080982

RESUMO

Magnetoelectric coupling, as a fundamental physical nature and with the potential to add functionality to devices while also reducing energy consumption, has been challenging to be probed in freestanding membranes or two-dimensional materials due to their instability and fragility. In this paper, we report a magnetoelectric coupling probed by optical second harmonic generation with external magnetic field, and show the manipulation of the ferroelectric and antiferromagnetic orders by the magnetic and thermal fields in BiFeO3 films epitaxially grown on the substrates and in the freestanding ones. Here we define an optical magnetoelectric-coupling constant, denoting the ability of controlling light-induced nonlinear polarization by the magnetic field, and found the magnetoelectric-coupling was suppressed by strain releasing but remain robust against thermal fluctuation for freestanding BiFeO3.

19.
Nanoscale ; 14(25): 8934-8943, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35642506

RESUMO

Identifying new two-dimensional intrinsic ferromagnets with high transition temperatures is a key step of improving device performance. Here we used first-principles calculations to demonstrate that the monolayer Janus Mo2I3Br3 is an intrinsic ferromagnetic bipolar semiconductor with a large out-of-plane spin orientation. The calculated phonon dispersion and ab initio molecular dynamic simulations indicate the stability dynamically and thermally. Furthermore, we investigated the effect of electrostatic doping or in-plane biaxial strain on the electronic structures and magnetic and optical properties of monolayer Mo2I3Br3. We find that the magnetic anisotropy energy and Curie temperature are enhanced more than 4 and 2 times with the hole doping compared with those in the pristine monolayer Mo2I3Br3, respectively. The calculated electronic structures show that the stable half-metallic states are formed by electron or hole doping due to the strong spin polarization of the electronic states around the Fermi level. Furthermore, the spin orientation in the metallic channel of the doped monolayer Mo2I3Br3 can be flipped with the increase of electron doping concentration. In addition, the magnetic anisotropy energy and Curie temperature can also be effectively manipulated by in-plane biaxial strain. The spin polarization of the conduction band minimum can be reversed by the tensile strain of 3% for the monolayer Mo2I3Br3, transforming it into an indirect band gap semiconductor. Finally, the calculated large and tunable optical absorption coefficient indicates that monolayer Mo2I3Br3 is a promising candidate for potential optoelectronic applications. Our results may open up more opportunities for few-layer van der Waals crystals in magnetic storage, spintronics, and optoelectronic devices.

20.
Nanoscale ; 14(39): 14537-14543, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36185039

RESUMO

Single charge control of localized excitons (LXs) in two-dimensional transition metal dichalcogenides (TMDCs) is crucial for potential applications in quantum information processing and storage. However, traditional electrostatic doping method by applying metallic gates onto TMDCs may cause inhomogeneous charge distribution, optical quenching, and energy loss. Herein, by locally controlling the ferroelectric polarization of the ferroelectric thin film BiFeO3 (BFO) with a scanning probe, we can deterministically manipulate the doping type of monolayer WSe2 to achieve p-type and n-type doping. This nonvolatile approach can maintain the doping type and hold the localized excitonic charges for a long time without applied voltage. Our work demonstrated that the ferroelectric polarization of BFO can control the charges of LXs effectively. Neutral and charged LXs have been observed in different ferroelectric polarization regions, confirmed by magnetic optical measurement. Highly circular polarization degree with 90% photon emission from these quantum emitters was achieved in high magnetic fields. Controlling the single charge of LXs in a non-volatile way shows a great potential for deterministic photon emission with desired charge states for photonic long-term memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA