Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2015: 927817, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078886

RESUMO

Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Condução Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia , Animais , Anuros , Sinalização do Cálcio/efeitos dos fármacos , Técnicas In Vitro
2.
Kaohsiung J Med Sci ; 38(5): 425-436, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35050556

RESUMO

Cell division cycle 20 (CDC20) and microRNAs (miRNAs) are differentially expressed in non-small cell lung cancer (NSCLC). The current study aimed to investigate the role of miR-1321 and miR-7515 regulation in CDC20 during NSCLC development. CDC20 expression in paracancerous and tumor tissues was assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The relationship between CDC20 expression and prognosis of patients was analyzed using the TCGA database. The expression profile of CDC20 in healthy lung cells and NSCLC cells was detected using qRT-PCR and western blotting. After the knockdown of CDC20 in NSCLC cells, the cell proliferation, apoptosis, migration, invasion, and cell cycle changes were investigated by CCK8, EdU, flow cytometry, wound healing, and Transwell assays. The miRNAs targeting CDC20 were predicted using two bioinformatics websites and validated using dual-luciferase assays. CDC20 was enhanced in NSCLC tissues and cells, thus predicting the poor prognosis in NSCLC patients. After CDC20 inhibition, the malignant phenotype of NSCLC cells was reverted. miR-1321 and miR-7515 targeted CDC20 and exhibited the same anti-tumor effects as CDC20 silencing. Functional rescue experiments showed that CDC20 overexpression averted the anti-tumor effects of miR-1321 and miR-7515 on NSCLC cells. miR-1321 and miR-7515 inhibited NSCLC development by targeting CDC20. Thus, the current study has implications in NSCLC treatment and provides novel insights into NSCLC management.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA