Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Chem Soc Rev ; 52(15): 5013-5050, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37431250

RESUMO

The ubiquity of solid-liquid interfaces in nature and the significant role of their atomic-scale structure in determining interfacial properties have led to intensive research. Particularly in electrocatalysis, however, a molecular-level picture that clearly describes the dynamic interfacial structures and organizations with their correlation to preferred reaction pathways in electrochemical reactions remains poorly understood. In this review, CO2 electroreduction reaction (CO2RR) is spatially and temporally understood as a result of intricate interactions at the interface, in which the interfacial features are highly relevant. We start with the discussion of current understandings and model development associated with the charged electrochemical interface as well as its dynamic landscape. We further highlight the interactive dynamics from the interfacial field, catalyst surface charges and various gradients in electrolyte and interfacial water structures at interfaces under CO2RR working conditions, with emphasis on the interfacial-structure dependence of catalytic reactivity/selectivity. Significantly, a probing energy-dependent "in situ characterization map" for dynamic interfaces based on various complementary in situ/operando techniques is proposed, aiming to present a comprehensive picture of interfacial electrocatalysis and to provide a more unified research framework. Moreover, recent milestones in both experimental and theoretical aspects to establish the correct profile of electrochemical interfaces are stressed. Finally, we present key scientific challenges with related perspectives toward future opportunities for this exciting frontier.

2.
Angew Chem Int Ed Engl ; : e202407791, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860734

RESUMO

Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH4) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH4 and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH4 toward multicarbon (C2+) hydrocarbons, particularly ethylene (C2H4). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH4 into C2H4 with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH4 and the resulting C2H6, constituting a truly synergistic catalytic system to facilitate the C2H4 generation. This work offers a novel perspective on the advancement of photocatalytic directional CH4 conversion toward high value-added C2+ hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.

3.
Angew Chem Int Ed Engl ; : e202408527, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958191

RESUMO

Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles (NPs) and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2% at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.

4.
Chem Rev ; 121(21): 13051-13085, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34378934

RESUMO

Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.


Assuntos
Hidrogênio , Semicondutores , Catálise , Técnicas de Química Sintética , Hidrogênio/química , Estresse Oxidativo
5.
Angew Chem Int Ed Engl ; 62(41): e202311731, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37632151

RESUMO

Solar-driven CO2 reduction integrated with C-C/C-X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C-H bonds for accessing allylic C-C products, over SiO2 -supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C-C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2-5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.

6.
Angew Chem Int Ed Engl ; 62(22): e202303054, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36988009

RESUMO

Photocatalytic epoxide alcoholysis through C-O bond cleavage and formation has emerged as an alternative to synthesizing anti-tumoral pharmaceuticals and fine chemicals. However, the lack of crucial evidence to interpret the interaction between reactants and photocatalyst surface makes it challenging for photocatalytic epoxide alcoholysis with both high activity and regioselectivity. In this work, we report the hierarchical ZnIn2 S4 @CdS photocatalyst for epoxide alcoholysis with high regioselectivity nearly 100 %. Mechanistic studies unveil that the precise activation switch on exposed Zn acid sites for C-O bond polarization and cleavage has a critical significance for achieving efficient photocatalytic performance. Furthermore, the establishment of Z-scheme heterojunction facilitates the interface charge separation and transfer. Remarkably, the underlying regioselective photocatalytic reaction pathway has been distinctly revealed.

7.
Angew Chem Int Ed Engl ; 62(29): e202304306, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37208951

RESUMO

Benzimidazoles are a versatile class of scaffolds with important biological activities, whereas their synthesis in a lower-cost and more efficient manner remains a challenge. Here, we demonstrate a conceptually new radical route for the high-performance photoredox coupling of alcohols and diamines to synthesize benzimidazoles along with stoichiometric hydrogen (H2 ) over Pd-decorated ultrathin ZnO nanosheets (Pd/ZnO NSs). The mechanistic study reveals the unique advantage of ZnO NSs over other supports and particularly that the features of Pd nanoparticles in facilitating the cleavage of the α-C-H bond of alcohols and adsorbing subsequently-generated C-centered radicals hold the key to turning on the reaction. This work highlights a new insight into radical-induced efficient benzimidazole synthesis pairing with H2 evolution by rationally designing semiconductor-based photoredox systems.

8.
Chem Soc Rev ; 50(13): 7539-7586, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34002737

RESUMO

Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.

9.
Angew Chem Int Ed Engl ; 60(39): 21150-21172, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33908154

RESUMO

Photocatalytic reduction of CO2 to solar fuels and/or fine chemicals is a promising way to increase the energy supply and reduce greenhouse gas emissions. However, the conventional reaction system for CO2 photoreduction with pure H2 O or sacrificial agents usually suffers from low catalytic efficiency, poor stability, or cost-ineffective atom economy. A recent surge of developments, in which photocatalytic CO2 valorization is integrated with selective organic synthesis into one reaction system, indicates an efficient modus operandi that enables sufficient utilization of photogenerated electrons and holes to achieve the goals for sustainable economic and social development. In this Review we discuss current advances in cooperative photoredox reaction systems that integrate CO2 valorization with organics upgrading based on heterogeneous photocatalysis. The applications and virtues of this strategy and the underlying reaction mechanisms are discussed. The ongoing challenges and prospects in this area are critically discussed.

10.
Angew Chem Int Ed Engl ; 60(14): 7962-7970, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372353

RESUMO

Solar-driven syngas production by CO2 reduction provides a sustainable strategy to produce renewable feedstocks. However, this promising reaction often suffers from tough CO2 activation, sluggish oxidative half-reaction kinetics and undesired by-products. Herein, we report a function-oriented strategy of deliberately constructing black phosphorus quantum dots-ZnIn2 S4 (BP/ZIS) heterostructures for solar-driven CO2 reduction to syngas, paired with selectively oxidative C-N bond formation, in one redox cycle. The optimal BP/ZIS heterostructure features the enhanced charge-carrier separation and enriched active sites for cooperatively photocatalytic syngas production with a tunable ratio of CO/H2 and efficient oxidation of amines to imines with high conversion and selectivity. This prominent catalytic performance arises from the efficient electronic coupling between black phosphorus quantum dots and ZnIn2 S4 , as well as the optimized adsorption strength for key reaction intermediates, as supported by both experimental and theoretical investigations. We also demonstrate a synergistic interplay between CO2 reduction and amine dehydrogenation oxidation, rather than simply collecting these two single half-reactions in this dual-functional photoredox system.

11.
J Am Chem Soc ; 142(52): 21899-21912, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33322903

RESUMO

Conjugated polymers are deemed as conductive carrier mediators for engendering the π electrons along the molecular framework, while the role of nonconjugated insulated polymers has been generally overlooked without the capability to participate in the solar-powered oxidation-reduction kinetics and charge-transfer process. Alternatively, considering the ultrashort charge lifetime and significant deficiency of metal nanocluster (NC)-based photosystems, the fine tuning of charge migration over atomically precise ultrasmall metal NCs as novel light-harvesting antennas has so far not yet been unleashed. Here, we unlock the charge-transfer capability of a nonconjugated polymer to modulate the charge flow over metal NCs (Aux and Au25) by such a solid-state nonconductive polymer via a conceptually new chemistry strategy by which l-glutathione (GSH)-capped gold (Aux@GSH) NCs and poly(diallyl-dimethylammonium chloride) (PDDA) were alternately self-assembled on the metal oxide (MO: WO3, Fe2O3, and TiO2) substrates. The ultrathin nonconjugated PDDA interim layer periodically intercalated in-between Aux (Au25) NC layers concurrently serves as an unexpected charge-transfer mediator to foster the unidirectional electron flow from Aux(Au25) NCs to MOs by forming a tandem charge-transfer chain, hence endowing the multilayered MO/(PDDA-Aux)n heterostructures with significantly boosted photoelectrochemical water oxidation performance under light irradiation. The unanticipated role of PDDA as a cascade charge mediator is demonstrated to be universal. Our work would unlock the potential charge-transport capability of nonconjugated polymers as a novel charge mediator for solar-to-chemical conversion.

12.
Langmuir ; 35(17): 5728-5736, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30950616

RESUMO

Photostability is a critical issue for evaluating the use of photocatalysts to realize large-scale implementation of solar energy conversion. Recently emerged ultrasmall gold (Au) clusters with distinctive physicochemical properties have been regarded as visible-light photosensitizers for photoredox catalysis, whereas the poor stability under visible-light exposure greatly restricts their photocatalytic applications. Herein, we provide a proof-of-concept study on enhancing the photostability of ultrasmall Au clusters via a combined strategy of surface engineering and interfacial modification. The photostability of Au clusters on the surface of TiO2 nanosheets with less hydroxyl group can be improved to some extent as compared to that on TiO2 nanoparticles with abundant hydroxyl groups under continuous visible-light irradiation (λ > 420 nm). Moreover, the subsequent modification of branched polyethylenimine (BPEI) between TiO2 nanosheets and Au clusters further improves their photostability upon light illumination. Consequently, the as-constructed TiO2 nanosheet-BPEI-Au cluster composites exhibit stable visible-light activity toward Cr(VI) photoreduction. It is hoped that the joint strategy via surface engineering and interfacial modification provides a facile guideline for stabilizing ultrasmall Au clusters toward targeting applications in the photoredox catalysis process.

13.
Langmuir ; 35(34): 11056-11065, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31365263

RESUMO

Cocatalysts play a significant role in accelerating the catalytic reactions of semiconductor photocatalyst. In particular, a semiconductor assembled with dual cocatalysts, i.e., reduction and oxidation cocatalysts, can obviously enhance the photocatalytic performance because of the synergistic effect of fast consumption of photogenerated electrons and holes simultaneously. However, in most cases, noble metal cocatalysts are employed, which tremendously increases the cost of the photocatalysts and restricts their large-scale applications. Herein, on the platform of one-dimensional (1D) CdS nanowires, we have utilized the earth-abundant dual cocatalysts, MoS2 and cobalt phosphate (Co-Pi), to construct the CdS@MoS2@Co-Pi (CMC) core-shell hybrid photocatalysts. In this dual-cocatalyst system, Co-Pi is in a position to expedite the migration of holes from CdS, while MoS2 acts as an electron transporter as well as active sites to accelerate the surface water reduction reaction. Taking the advantages of the dual-cocatalyst system, the prepared CMC hybrid shows an obvious enhancement of both the photoactivity and photostability toward hydrogen production compared with bare 1D CdS nanowires and binary hybrids (CdS@MoS2 and CdS@Co-Pi). This work highlights the promising prospects for rational utilization of earth-abundant dual cocatalysts to design low-cost and efficient hybrids toward boosting photoredox catalysis.

14.
Angew Chem Int Ed Engl ; 58(29): 10003-10007, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31115133

RESUMO

The efficiency of solar hydrogen evolution closely depends on the multiple electrons accumulation on the catalytic center for two-electron-involved water reduction. Herein, we report an effective approach to enable broadband light absorption and unidirectional electron flow for efficiently accumulating electrons at active sites for hydrogen evolution by rationally engineering the nanostructure of Pt nanoparticles (NPs), TiO2 , and SiO2 support. In addition to Schottky-junction-driven electron transfer from TiO2 to Pt, Pt NPs also produce hot electrons by recycling the scattered visible and near-infrared (vis-NIR) light of the support. Unidirectional electron flow to active sites is realized by tuning the components spatial distribution. These features collectively accumulate multiple electrons at catalytic Pt sites, thereby affording enhanced activity toward hydrogen evolution under simulated sunlight.

15.
Small ; 14(21): e1704531, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667357

RESUMO

Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO2 nanotube arrays (TNTAs@RGO/MoS2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H2 than binary TNTAs@RGO and TNTAs/MoS2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes.

16.
Chem Soc Rev ; 46(2): 337-365, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28083578

RESUMO

There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

17.
Angew Chem Int Ed Engl ; 57(40): 13082-13085, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088851

RESUMO

Ultrathin two-dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2 P) nanosheets (NSs) with exposed (001) facets. We show that single-layer functionalized graphene with residual oxygen-containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.

18.
Angew Chem Int Ed Engl ; 57(51): 16811-16815, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30402925

RESUMO

Photocatalytic conversion of diluted CO2 into solar fuel is highly appealing yet still in its infancy. Herein, we demonstrate the metal-node-dependent performance for photoreduction of diluted CO2 by constructing Ni metal-organic framework (MOF) monolayers (Ni MOLs). In diluted CO2 (10 %), Ni MOLs exhibit a highest apparent quantum yield of 1.96 % with a CO selectivity of 96.8 %, which not only exceeds reported systems in diluted CO2 but also is superior to most catalysts in pure CO2 . Whereas isostructural Co MOLs is almost inactive in diluted CO2 , indicating the performance is dependent on the metal nodes. Experimental and theoretical investigations show that strong CO2 binding affinity of Ni MOLs is the crucial factor, which stabilizes the Ni-CO2 adducts and facilitates CO2 -to-CO conversion.

19.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151576

RESUMO

Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion.

20.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044969

RESUMO

Promising semiconductor-based photocatalysis toward achieving efficient solar-to-chemical energy conversion is an ideal strategy in response to the growing worldwide energy crisis, which however is often practically limited by the insufficient photoinduced charge-carrier separation. Here, a rational cascade engineering of Au nanoparticles (NPs) decorated 2D/2D Bi2 WO6 -TiO2 (B-T) binanosheets to foster the photocatalytic efficiency through the manipulated flow of multichannel-enhanced charge-carrier separation and transfer is reported. Mechanistic characterizations and control experiments, in combination with comparative studies over plasmonic Au/Ag NPs and nonplasmonic Pt NPs decorated 2D/2D B-T composites, together demonstrate the cooperative synergy effect of multiple charge-carrier transfer channels in such binanosheets-based ternary composites, including Z-scheme charge transfer, "electron sink," and surface plasmon resonance effect, which integratively leads to the boosted photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA