Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878012

RESUMO

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Assuntos
COVID-19 , Proteínas de Transporte , Interferon Tipo I , Proteínas não Estruturais Virais , COVID-19/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
Anal Chem ; 96(32): 13291-13298, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39083756

RESUMO

Mass analysis in an ion trap is conventionally realized through time domain analysis of the ejected ion current collected from an electron multiplier (EM), in which the ion ejection time is found to have a correlation with the mass-to-charge (m/z) ratio of the ion. In this study, we investigated a new method for mass analysis by examining ion ejection signals in the frequency domain. Theoretical analysis and ion trajectory simulations show that ions of the same m/z ratio are ejected from an ion trap at regular intervals, producing a periodic pulsed signal on the EM. The period of this pulsed ejection signal is directly linked to the m/z values of the ions. To realize this method experimentally, a broadband preamplifier was built and integrated on a miniature ion trap mass spectrometer (the "Brick" series from Nier Inc.) to capture this pulsed ion ejection signal collected from the EM. Experimental results were in good agreement with theoretical and simulation analyses. This method has the potential to improve the mass resolution of an ion trap mass analyzer. As a proof-of-concept demonstration, a peak width of 0.1 Da at a m/z value of 281 was achieved in experiments.

3.
Diabetes Metab Res Rev ; 40(3): e3687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779323

RESUMO

The International Working Group on the Diabetic Foot (IWGDF) has published evidence-based guidelines on the management and prevention of diabetes-related foot diseases since 1999. The present guideline is an update of the 2019 IWGDF guideline on the diagnosis and management of foot infections in persons with diabetes mellitus. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was used for the development of this guideline. This was structured around identifying clinically relevant questions in the P(A)ICO format, determining patient-important outcomes, systematically reviewing the evidence, assessing the certainty of the evidence, and finally moving from evidence to the recommendation. This guideline was developed for healthcare professionals involved in diabetes-related foot care to inform clinical care around patient-important outcomes. Two systematic reviews from 2019 were updated to inform this guideline, and a total of 149 studies (62 new) meeting inclusion criteria were identified from the updated search and incorporated in this guideline. Updated recommendations are derived from these systematic reviews, and best practice statements made where evidence was not available. Evidence was weighed in light of benefits and harms to arrive at a recommendation. The certainty of the evidence for some recommendations was modified in this update with a more refined application of the GRADE framework centred around patient important outcomes. This is highlighted in the rationale section of this update. A note is also made where the newly identified evidence did not alter the strength or certainty of evidence for previous recommendations. The recommendations presented here continue to cover various aspects of diagnosing soft tissue and bone infections, including the classification scheme for diagnosing infection and its severity. Guidance on how to collect microbiological samples, and how to process them to identify causative pathogens, is also outlined. Finally, we present the approach to treating foot infections in persons with diabetes, including selecting appropriate empiric and definitive antimicrobial therapy for soft tissue and bone infections; when and how to approach surgical treatment; and which adjunctive treatments may or may not affect the infectious outcomes of diabetes-related foot problems. We believe that following these recommendations will help healthcare professionals provide better care for persons with diabetes and foot infections, prevent the number of foot and limb amputations, and reduce the patient and healthcare burden of diabetes-related foot disease.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/diagnóstico , Pé Diabético/etiologia , Pé Diabético/terapia ,
4.
Diabetes Metab Res Rev ; 40(3): e3723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37715722

RESUMO

BACKGROUND: Securing an early accurate diagnosis of diabetic foot infections and assessment of their severity are of paramount importance since these infections can cause great morbidity and potential mortality and present formidable challenges in surgical and antimicrobial treatment. METHODS: In June 2022, we searched the literature using PubMed and EMBASE for published studies on the diagnosis of diabetic foot infection (DFI). On the basis of pre-determined criteria, we reviewed prospective controlled, as well as non-controlled, studies in English. We then developed evidence statements based on the included papers. RESULTS: We selected a total of 64 papers that met our inclusion criteria. The certainty of the majority of the evidence statements was low because of the weak methodology of nearly all of the studies. The available data suggest that diagnosing diabetic foot infections on the basis of clinical signs and symptoms and classified according to the International Working Group of the Diabetic Foot/Infectious Diseases Society of America scheme correlates with the patient's likelihood of the need for hospitalisation, lower extremity amputation, and risk of death. Elevated levels of selected serum inflammatory markers such as erythrocyte sedimentation rate (ESR), C-reactive protein and procalcitonin are supportive, but not diagnostic, of soft tissue infection. Culturing tissue samples of soft tissues or bone, when care is taken to avoid contamination, provides more accurate microbiological information than culturing superficial (swab) samples. Although non-culture techniques, especially next-generation sequencing, are likely to identify more bacteria from tissue samples including bone than standard cultures, no studies have established a significant impact on the management of patients with DFIs. In patients with suspected diabetic foot osteomyelitis, the combination of a positive probe-to-bone test and elevated ESR supports this diagnosis. Plain X-ray remains the first-line imaging examination when there is suspicion of diabetic foot osteomyelitis (DFO), but advanced imaging methods including magnetic resonance imaging (MRI) and nuclear imaging when MRI is not feasible help in cases when either the diagnosis or the localisation of infection is uncertain. Intra-operative or non-per-wound percutaneous biopsy is the best method to accurately identify bone pathogens in case of a suspicion of a DFO. Bedside percutaneous biopsies are effective and safe and are an option to obtain bone culture data when conventional (i.e. surgical or radiological) procedures are not feasible. CONCLUSIONS: The results of this systematic review of the diagnosis of diabetic foot infections provide some guidance for clinicians, but there is still a need for more prospective controlled studies of high quality.


Assuntos
Diabetes Mellitus , Pé Diabético , Osteomielite , Infecções dos Tecidos Moles , Humanos , Pé Diabético/complicações , Pé Diabético/diagnóstico , Pé Diabético/microbiologia , Estudos Prospectivos , , Osteomielite/diagnóstico , Infecções dos Tecidos Moles/complicações , Infecções dos Tecidos Moles/diagnóstico , Biomarcadores
5.
Diabetes Metab Res Rev ; 40(3): e3730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814825

RESUMO

The optimal approaches to managing diabetic foot infections remain a challenge for clinicians. Despite an exponential rise in publications investigating different treatment strategies, the various agents studied generally produce comparable results, and high-quality data are scarce. In this systematic review, we searched the medical literature using the PubMed and Embase databases for published studies on the treatment of diabetic foot infections from 30 June 2018 to 30 June 2022. We combined this search with our previous literature search of a systematic review performed in 2020, in which the infection committee of the International Working Group on the Diabetic Foot searched the literature until June 2018. We defined the context of the literature by formulating clinical questions of interest, then developing structured clinical questions (Patients-Intervention-Control-Outcomes) to address these. We only included data from controlled studies of an intervention to prevent or cure a diabetic foot infection. Two independent reviewers selected articles for inclusion and then assessed their relevant outcomes and methodological quality. Our literature search identified a total of 5,418 articles, of which we selected 32 for full-text review. Overall, the newly available studies we identified since 2018 do not significantly modify the body of the 2020 statements for the interventions in the management of diabetes-related foot infections. The recent data confirm that outcomes in patients treated with the different antibiotic regimens for both skin and soft tissue infection and osteomyelitis of the diabetes-related foot are broadly equivalent across studies, with a few exceptions (tigecycline not non-inferior to ertapenem [±vancomycin]). The newly available data suggest that antibiotic therapy following surgical debridement for moderate or severe infections could be reduced to 10 days and to 3 weeks for osteomyelitis following surgical debridement of bone. Similar outcomes were reported in studies comparing primarily surgical and predominantly antibiotic treatment strategies in selected patients with diabetic foot osteomyelitis. There is insufficient high-quality evidence to assess the effect of various recent adjunctive therapies, such as cold plasma for infected foot ulcers and bioactive glass for osteomyelitis. Our updated systematic review confirms a trend to a better quality of the most recent trials and the need for further well-designed trials to produce higher quality evidence to underpin our recommendations.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Osteomielite , Infecções dos Tecidos Moles , Humanos , Pé Diabético/terapia , Pé Diabético/tratamento farmacológico , Antibacterianos/uso terapêutico , Infecções dos Tecidos Moles/complicações , Infecções dos Tecidos Moles/terapia , Osteomielite/complicações , Osteomielite/terapia
6.
BMC Urol ; 24(1): 190, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223599

RESUMO

BACKGROUND: To compare the operative effect and clinical efficacy of the Moses laser mode and the Raykeen holmium laser energy platform powder mode under flexible ureteroscopic lithotripsy in patients with impacted upper ureteral stones. METHODS: From March 2022 to September 2022, 72 patients were divided into a Moses laser group and a Raykeen laser group according to surgical method, with 36 patients in each group. CT and ureteroscopy confirmed that all patients had isolated impacted upper ureteral stones. The stone volume (mm3), stone density (Hu) and severity of hydronephrosis were measured by CT. Postoperative complications were evaluated using the Clavien-Dindo score. RESULTS: There were no complications of ureteral stenosis related to the laser treatment. The operative time and lithotripsy time were lower in the Moses laser group than in the Raykeen laser group (P < 0.05). The stone-free survival rate did not differ significantly between the two groups (P = 0.722). Stone volume was found to be positively correlated with laser energy and lithotripsy time in both groups (P < 0.01). There was no significant correlation between laser energy and lithotripsy time or ureteral stone density (Hu) in the Moses laser group (P > 0.05) or the Raykeen laser group (P > 0.05). CONCLUSIONS: The contact mode of Moses technology and the powder mode of Raykeen laser lithotripsy can be used for the ablation of a single impacted upper ureteral stone. The ablation speed was related to the stone volume and the severity of polyp hyperplasia, not the stone density. We recommend the use of the powdered mode as a therapeutic measure for the treatment of impacted upper ureteral stones in flexible ureteroscopic lithotripsy.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Cálculos Ureterais , Ureteroscopia , Humanos , Cálculos Ureterais/cirurgia , Cálculos Ureterais/terapia , Lasers de Estado Sólido/uso terapêutico , Litotripsia a Laser/métodos , Ureteroscopia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Estudos Retrospectivos , Idoso , Ureteroscópios
7.
Clin Infect Dis ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779457

RESUMO

The International Working Group on the Diabetic Foot (IWGDF) has published evidence-based guidelines on the management and prevention of diabetes-related foot diseases since 1999. The present guideline is an update of the 2019 IWGDF guideline on the diagnosis and management of foot infections in persons with diabetes mellitus. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was used for the development of this guideline. This was structured around identifying clinically relevant questions in the P(A)ICO format, determining patient-important outcomes, systematically reviewing the evidence, assessing the certainty of the evidence, and finally moving from evidence to the recommendation. This guideline was developed for healthcare professionals involved in diabetes-related foot care to inform clinical care around patient-important outcomes. Two systematic reviews from 2019 were updated to inform this guideline, and a total of 149 studies (62 new) meeting inclusion criteria were identified from the updated search and incorporated in this guideline. Updated recommendations are derived from these systematic reviews, and best practice statements made where evidence was not available. Evidence was weighed in light of benefits and harms to arrive at a recommendation. The certainty of the evidence for some recommendations was modified in this update with a more refined application of the GRADE framework centred around patient important outcomes. This is highlighted in the rationale section of this update. A note is also made where the newly identified evidence did not alter the strength or certainty of evidence for previous recommendations. The recommendations presented here continue to cover various aspects of diagnosing soft tissue and bone infections, including the classification scheme for diagnosing infection and its severity. Guidance on how to collect microbiological samples, and how to process them to identify causative pathogens, is also outlined. Finally, we present the approach to treating foot infections in persons with diabetes, including selecting appropriate empiric and definitive antimicrobial therapy for soft tissue and bone infections; when and how to approach surgical treatment; and which adjunctive treatments may or may not affect the infectious outcomes of diabetes-related foot problems. We believe that following these recommendations will help healthcare professionals provide better care for persons with diabetes and foot infections, prevent the number of foot and limb amputations, and reduce the patient and healthcare burden of diabetes-related foot disease.

8.
Anal Chem ; 95(35): 13297-13304, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610312

RESUMO

A 2D flow cytometry platform, known as CytoLM Plus, was developed for multi-parameter single-cell analysis. Single particles or cells after hydrodynamic alignment in a microfluidic unit undergo first-dimension fluorescence and side scattering dual-channel optical detection. They were thereafter immediately directed to ICP-MS by connecting the microfluidic unit with a high-efficiency nebulizer to facilitate the second-dimension ICP-MS detection. Flow cytometry measurements of fluorescent microspheres evaluated the performance of CytoLM Plus for optical detection. 6434 fluorescence bursts were observed with a valid signal proportion as high as 99.7%. After signal unification and gating analysis, 6067 sets of single-particle signals were obtained with 6.6 and 6.2% deviations for fluorescence burst area and height, respectively. This is fairly comparable with that achieved by a commercial flow cytometer. Afterward, CytoLM Plus was evaluated by 2D flow cytometry measurement of Ag+-incubated and AO-stained MCF-7 cells. A program for 2D single-cell signal unification was developed based on the algorithm of screening in lag time window. In the present case, a lag time window of -4.2 ± 0.09 s was determined by cross-correlation analysis and two-parameter optimization, which efficiently unified the concurrent single-cell signals from fluorescence, side scattering, and ICP-MS. A total of 495 sets of concurrent 2D signals were screened out, and the statistical analysis of these single-cell signals ensured 2D multi-parameter single-cell analysis and data elucidation.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Corantes , Citometria de Fluxo , Análise de Célula Única
9.
J Neuroinflammation ; 19(1): 184, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836200

RESUMO

BACKGROUND: Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS: We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS: Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS: NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamassomos , Camundongos , NADPH Oxidase 2 , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
10.
Opt Lett ; 47(5): 1153-1156, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230314

RESUMO

A GaInAsP/GaAs/GaAsP Al-free laser with asymmetric potential barriers is designed theoretically to prevent carrier leakage. The band alignment demonstrates that a high height of the potential barrier decreases the leakage current. The internal quantum efficiency increases by increasing the injection efficiency, which is attributed to the decreasing electron potential barrier heights. Moreover, the threshold current and operating voltage decrease by adopting a novel barrier so that the output power and power conversion efficiency (PCE) increase. When the injection current is 5 kA/cm2, the PCE is 77.82% and the output power is 13.21 W. The physical mechanism of potential barrier heights affecting carrier transport is investigated, which will provide a theoretical basis for optimizing laser diodes.

11.
Appl Opt ; 61(2): 478-484, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200886

RESUMO

Quantitative chemometric widefield endogenous fluorescence microscopy (CFM) maps the endogenous absolute chromophore concentration and spatial distribution in cells and tissue sections label-free from fluorescence color images under broadband excitation and detection. By quantifying the endogenous chromophores, including tryptophan, elastin, reduced nicotinamide adenine dinucleotide [NAD(P)H], and flavin adenine dinucleotide (FAD), CFM reveals the biochemical environment and subcellular structure. Here we show that the chromophore information entropy, marking its spatial distribution pattern of quantitative chemometric endogenous fluorescence at the microscopic scale, improves photonic lung cancer diagnosis with independent diagnostic power to the cellular metabolism biomarker. NAD(P)H and FAD's information entropy is found to decrease from normal to perilesional to cancerous tissue, whereas the information entropy for the redox ratios [FAD/tryptophan and FAD/NAD(P)H] is smaller for the normal tissue than both perilesional and cancerous tissue. CFM imaging of the specimen's inherent biochemical and structural properties eliminates the dependence on measurement details and facilitates robust, accurate diagnosis. The synergy of quantifying absolute chromophore concentration and information entropy achieves high accuracies for a three-class classification of lung tissue into normal, perilesional, and cancerous ones and a three-class classification of lung cancers into grade 1, grade 2, and grade 3 using a support vector machine, outperforming the chromophore concentration biomarkers.


Assuntos
Flavina-Adenina Dinucleotídeo , Neoplasias Pulmonares , Quimiometria , Entropia , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , NAD/metabolismo
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 945-948, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36443032

RESUMO

Diabetic foot ulcers, with an annual incidence as high as 8.1% in China, impose enormous social and economic burdens on diabetic patients, families and society. Substantial progress has been made in China in the work concerning diabetic foot ulcers in the past two decades, and the major amputation rate in patients with diabetic foot ulcers in China has decreased significantly, even though it is still far higher than the level of developed countries in Europe and North America. Therefore, if we are to further improve the diagnosis and treatment of diabetic foot ulcers in China, the only solution lies in reinforced efforts in innovation, including innovations in concepts, models, and technology, and the training of national and provincial-level leading experts in diabetic foot ulcer care. Only in this way, can we further reduce the disability and mortality caused by diabetic foot ulcers in China. We, herein, discussed the importance and necessity of establishing a comprehensive diabetic foot prevention and control system suited to the actual circumstances of China through strengthening innovative research. On that basis, we also reported existing problems and prospects for future development.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/terapia , China
13.
Anal Chem ; 93(23): 8203-8209, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077198

RESUMO

A two-dimensional cytometry platform (CytoLM) with high sensitivity and high temporal resolution is developed for single-particle and single-cell sampling and analysis. First, a Dean flow-assisted vortex capillary cell sampling (VCCS) unit confines the sample stream in curved flow and drives to focus and align the particles or cells in a small probe volume. By coupling VCCS to a laser-induced fluorescence (LIF) detector with data acquisition and processing capability, a high-throughput single-particle/cell analysis system (VCCS-LIF) was established. The particle analysis throughput of 119.42/s and a detection recovery of 78.20 ± 1.75% were achieved at a density of 9.16 × 104/mL for fluorescent particles, and the cell analysis throughput is 48.20/s at a density of 1.5 × 105/mL. Second, the CytoLM platform is constructed by hyphenating VCCS-LIF with inductively coupled plasma mass spectrometry (ICP-MS). In the analysis of HepG2 cells by Ag+ incubation and AO staining, 10,760 fluorescence bursts and 3068 MS events were observed in 240 s. Invalid signals due to undispersed cells were controlled at 3.80% for LIF and 1.01% for MS, with a proportion of effective signal of >96.20%. After peak identification and integral processing of the original data, the statistical results including peak area, height, width, and spacing are obtained concurrently and the information on concentration and elemental quantification of single cells is evaluated. CytoLM facilitates high-throughput, multi-dimensional, and multi-parameter characterization of particles and cells, and it may provide vast potential in life science analysis.


Assuntos
Imagem Individual de Molécula , Análise de Célula Única , Lasers , Espectrometria de Massas , Análise Espectral
14.
Anal Chem ; 92(9): 6604-6612, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233376

RESUMO

Single-cell analysis facilitates perception into the most essential processes in life's mysteries. While it is highly challenging to quantify them at the single-cell level, where precise single-cell sampling is the prerequisite. Herein, a real-time single-cell quantitative platform was established for high-throughput droplet-free single-cell sampling into time-resolved (TRA) ICP-MS and real-time quantification of intracellular target elements. The concentrated cells (2 × 106 cells mL-1) were spontaneously and orderly aligned in a spiral microchannel with 104 periodic dimensional confined micropillars. The quantification is conducted simultaneously by internal standard inducing from another branch channel in the chip. The flow-rate-independent feature of single-cell focusing into an aligned stream within a wide range of fluidic velocities (100-800 µL min-1) facilitates high-throughput, oil-free, single-cell introduction into TRA-ICP-MS. The system was used for real-time exploration of intracellular antagonism of Cu2+ against Cd2+. an obvious antagonistic effect was observed for the MCF-7 cell by culturing for 3, 6, 9, and 12 h with 100 µg L-1 Cd2+ and 100 µg L-1 Cu2+, and a rivalry rate of 12.8% was achieved at 12 h. At identical experimental conditions, however, limited antagonistic effect was encountered for a bEnd3 cell within the same incubation time period, with a rivalry rate of 4.81%. On the contrary, an antagonistic effect was not observed for the HepG2 cell by culturing for 6 h, while an obvious antagonistic effect was found by further culturing to 12 h, with a rivalry rate of 10.43%. For all three cell lines, significant heterogeneity was observed among individual cells.


Assuntos
Ensaios de Triagem em Larga Escala , Análise de Célula Única , Cádmio/química , Cobre/química , Humanos , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo , Células Tumorais Cultivadas
15.
Opt Express ; 28(17): 24799-24812, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907012

RESUMO

In a conventional three-dimensional (3D) measurement technique of a line-scan camera, the projection system based on surface structured light is a compromise of traditional projection technology, which suffers from complex calibration, complex structure and low accuracy. To this end, the coding line structured light based on the coded line laser projection system is proposed to address the 3D measurement of a line-scan camera. The single-line projection and codeable characteristics of coded line laser projection system (constructed by a point laser and a micro-electro-mechanical system (MEMS) scanning galvanometer and modeled as the line projection model) are fully matched with the imaging mode of the line-scan camera. The 3D measurement model based on the height information, lateral information and absolute phase of the coding line structured light is derived. The multi-position flat display calibration method is proposed to calibrate the system parameters. In addition, in order to obtain the accurate absolute phase from the phase shift combined binary code, the periodic error correction method based on expansion-corrosion is proposed to correct the phase error. Contrary to conventional structured light methods based on a line-scan camera, the proposed method has the advantages of high measurement accuracy, high efficiency, more compactness and low cost. The experiments affirm that the coding line structured light is valid and the proposed calibration method is feasible. Experimental results also indicate that the proposed method performs well for both diffuse reflective surfaces and reflective surfaces that are difficult to measure with conventional structured light methods based on a line-scan camera.

16.
Microb Pathog ; 147: 104292, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505653

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori (H. pylori) infection can occur in early childhood, without eradication therapies such infection can persist throughout life and cause many different diseases. This study investigated the metabolic characteristics and explored the underlying mechanism of children with H. pylori infection, and identified potential biomarkers for evaluating the efficacy of H. pylori eradication therapies. METHODS: We performed 1H NMR-based metabonomics coupled with multivariate analysis to investigate the metabolic profiling of serum samples between Children with and without H. pylori infection. In the same manner, we compared the alternations of metabolites in H. pylori-infected children before and after H. pylori eradication therapies. RESULTS: 21 metabolites from serum in H. pylori-infected and H. pylori-uninfected children were identified, which were mainly involved in energy, amino acid, lipid and microbial metabolism. We found that the serum levels of trimethylamine N-oxide and alanine were significantly higher in H. pylori-infected children compared to uninfected sera, whereas lactate was significantly lower. We also found that the levels of trimethylamine N-oxide and creatine in H. pylori-infected children was significantly decreased after H. pylori eradication therapies, whereas lactate and low-density lipoprotein/very low-density lipoprotein was significantly increased. CONCLUSIONS: This is the first study using 1H NMR-based metabolomics approach to explore the effects of H. pylori infection in children. Our results demonstrated that the disturbances of metabolism in energy, amino acids, lipids and microbiota could play an important role in the pathogenesis of gastrointestinal and extragastric diseases caused by H. pylori infection. Trimethylamine N-oxide and lactate might serve as potential serum biomarkers for evaluating the efficacy of H. pylori eradication therapies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Microbiota , Criança , Pré-Escolar , Humanos , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética
17.
Anal Bioanal Chem ; 412(3): 647-655, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836924

RESUMO

In this work, simple, rapid, and low-cost multiplexed detection of tumor-related micro-RNAs (miRNAs) was achieved based on multi-color fluorescence on a microfluidic droplet chip, which simplified the complexity of light path to a half. A four-T-junction structure was fabricated to form uniform nano-volume droplet arrays with customized contents. Multi-color quantum dots (QDs) used as the fluorescence labels were encapsulated into droplets to develop the multi-path fluorescence detection module. We designed an integrated multiplex fluorescence resonance energy transfer system assisted by multiple QDs (four colors) and one quencher to detect four tumor-related miRNAs (miRNA-20a, miRNA-21, miRNA-155, and miRNA-221). The qualitative analysis of miRNAs was realized by the color identification of QDs, while the quantitative detection of miRNAs was achieved based on the linear relationship between the quenching efficiency of QDs and the concentration of miRNAs. The practicability of the multiplex detection device was further confirmed by detecting four tumor-related miRNAs in real human serum samples. The detection limits of four miRNAs ranged from 35 to 39 pmol/L was achieved without any target amplification. And the linear range was from 0.1 nmol/L to 1 µmol/L using 10 nL detection volume (one droplet) under the detection speed of 320 droplets per minute. The multiple detection system for miRNAs is simple, fast, and low-cost and will be a powerful platform for clinical diagnostic analysis. Graphical abstract.


Assuntos
Colorimetria/métodos , MicroRNAs/metabolismo , Microfluídica , Fluorescência , Humanos , Limite de Detecção
18.
Mikrochim Acta ; 187(3): 194, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124079

RESUMO

A controllable approach for preparing a portable colloidal photonic crystal (CPC) array chip is presented. The approach was inspired by the confinement effect of nanoparticle self-assembly on patterned surface. Hydrophobic polydimethylsiloxane substrate with reproducible micro-region array was fabricated by soft-lithography. The substrate was employed as the patterned template for self-assembly of monodisperse polystyrene nanoparticles. The CPC units can be prepared in several minutes, and exhibit consistent reflection wavelength. By adjusting the size of polystyrene nanoparticles and the shape of micro-regions, CPC units with multiple structure, colors and geometries were obtained. The CPC array chip features fluorescence enhancement owing to the optical modulation capability of the periodic nanostructure of the self-assembled CPC. With the reflection wavelength (523 nm) of green CPC units overlapping the emission wavelength (520 nm, with excitation wavelength of 490 nm) of 6-carboxyfluorescein-labeled DNA probe, the fluorescence intensity increased more than 10-fold. For signal-amplified assay of adenosine, the concentration range of linear response was 5.0 × 10-5 mol L-1 to 1.0 × 10-3 mol L-1, and the limit of detection was 1.3 × 10-6 mol L-1. Because of the enhancement effect of photonic crystal, the fluorescence images were more readable from the CPC array chip, compared with those from the planar substrate. The chip has potential applications in multiplex determination with high-throughput via encoding strategy based on the tunable structure, color or geometric shape. Graphical abstractSchematic diagram of signal-enhanced fluorescent detection of adenosine based on the colloidal photonic crystal array chip (PDMS, polydimethylsiloxane; PS NPs, polystyrene nanoparticles; CPC, colloidal photonic crystal; GO, graphene oxide; FAM, 6-carboxyfluorescein).


Assuntos
Adenosina/análise , Técnicas Biossensoriais/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Coloides , Cristalização , Sondas de DNA/química , Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Fótons , Espectrometria de Fluorescência , Propriedades de Superfície
19.
Zhongguo Zhong Yao Za Zhi ; 45(21): 5143-5149, 2020 Nov.
Artigo em Zh | MEDLINE | ID: mdl-33350229

RESUMO

Yinshan Mountains stands on the southern edge of the Inner Mongolia Plateau, which stretches 1 200 km from east to west and 50 to 100 km from north to south. The rich and varied topographic environment of the Yinshan Mountains has created a variety of vegetation floras, which also makes the species of medicinal plant resources in this area unevenly distributed. Therefore, studying the spatial distribution difference of medicinal plant resources among various banners, counties, and districts in the Yinshan area is of great significance to formulate the protection policy and promote the industry development of medicinal plant. This study is based on the fourth national survey of traditional Chinese medicine resources in Inner Mongolia, regarding the results of the third national survey of traditional Chinese medicine resources. The species of medicinal plant resources in the Yinshan area around 31 banners, counties and districts were counted in detail. Then, using exploratory spatial data analysis(ESDA), trend surface analysis, spatial autocorrelation, geographical detector and other geostatistical analysis methods to analyze the differences in the spatial distribution of medicinal plant resources of the Yinshan area in Inner Mongolia. After discussing and analyzing the experimental results to account for the reasons for the overall trend of change and the degree of aggregation, the author further put forward relevant constructive suggestions. The results show that the areas with the most abundant and concentrated distribution of medicinal plant resources in the Yinshan area are located in Guyang county, Shiguai District of Baotou city, Tutou right banner, and Tuoketuo county; the higher richness and concentrated distribution of medicinal plant resources is in Wulate front banner, Wulate middle banner, Wulate back banner; areas with relatively low abundance and concentrated distribution of medicinal plant resources located in Qingshan district of Baotou city, Saihan district and Yuquan district of Hohhot city; areas with the lowest abundance and concentrated distribution of medicinal plant resources are located in Xincheng district and Huimin district of Hohhot city. It can be concluded that the horizontal distribution difference of multiple ecological factors, the special wetland environment of the river, the vertical difference of elevation, the farmland and other factors have an important influence on the richness of the medicinal plant resources species.


Assuntos
Plantas Medicinais , China , Medicina Tradicional Chinesa
20.
Anal Chem ; 91(24): 15826-15832, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31724393

RESUMO

ICP-MS is powerful in evaluating elemental species at the single-cell level, where high throughput/efficiency/precision are the keys for achieving statistically significant information based on massive data. We report an ultrahigh-throughput single-cell sampling system, consisting of a 3D spiral-helix tubing array to facilitate single-cell focusing into an orderly flow by inertial lift force and Dean drag force. The spiral-helix array ensures a superb single-cell sampling rate of 40 000 cells min-1 at a favorable temporal-spatial resolution of 41.55 ± 17.46 µm (distance between adjacent cells) or 0.97 ± 0.41 ms (time interval between adjacent cells). With a laboratory-made nebulization device, a cell measurement efficiency up to 42.1 ± 7.2% is achieved in ICP-MS assay. Analysis of Au nanoparticles (AuNPs) in living K562 cells after incubation illustrates obvious diversification of AuNPs among cells. The ultrahigh throughput and cell measurement efficiency generate massive data on single-cell assay, make statistical analysis more comprehensive, and enable interpreting extremely subtle differences among individual cells.


Assuntos
Corantes Fluorescentes/química , Análise de Célula Única/métodos , Ouro/química , Humanos , Células K562 , Espectrometria de Massas , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas , Análise de Célula Única/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA