Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37834500

RESUMO

Composite patches are widely accepted as a useful practice for the repair of cracked aircraft components and the repair method is of vital importance to the final performance of the repaired structures. The present research experimentally studied the repair efficiency and processing stability of pre-cured, prepreg (including unidirectional and plain weave prepregs) and wet-layup methods for use on cracked Ti-alloy panels through the configuration of a butt joint bonded with a one-sided composite patch. The efficiency and stability of these repair methods were elaborately evaluated and compared via the load bearing behavior, the microstructure of the bonding interface, and the structural failure morphology through two batches of testing specimens. Typical patterns were found in load-displacement curves where the initial damage and ultimate bearing load points divided them into elastic-linear, damage propagation and complete fracture phases. Although the co-cure process of both unidirectional prepreg and wet-layup methods can form a jigsaw-like demarcation interface between the adhesive layer and the composite patch to achieve a good bonding force and a high recovery of loading performance, the latter presents porous patches with a high coefficient of variation in load-carrying capacity. Conversely, the pre-cured laminate and the plain weave prepreg patches failed to restore the mechanical properties owing to the weak bonding interface and the low axial patch strength, respectively. The unidirectional prepreg patch was proven to be the optimal repair method for the cracked metallic structures when balancing repair efficiency and processing stability.

2.
Materials (Basel) ; 14(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361404

RESUMO

The glass fiber reinforced polypropylene/AA2024 hybrid laminates (short for Al/Gf/PP laminates) as structural materials were prepared and formed by hot pressing. The synergistic effects of temperature and loading speed on the laminate deformation under tensile and bending conditions were investigated and analyzed in this study. In tension, stress-strain curves presented bimodal types effected by tensile rates and temperatures. The state of PP resin determines the mechanical behavior of the FMLs. The tensile rate has no effect on FML deformation without heating or over the melting point of PP resin (about 170 °C). The softening point of PP resin (about 100 °C) is characteristic temperature. When the temperature exceeds the softening point but does not reach the melting point, the tensile strength and elongation will demonstrate coordinated growth at a relatively high tensile speed. The efficiency of fiber bridging is affected significantly since the resin is the medium that transfers load from the metal to the fiber. Under bending, the curves presented a waterfall decrement with temperature increment. The softening point of resin matrix is the key in a bending process. When the temperature is near the softening point, deformation is sensitive to both the temperature and the loading speed to a certain extent. If temperature is lower than softening point, deformation is mainly guided by temperature. If the temperature is beyond the softening point, loading speed is in a leading position of deformation. The bending strength gradually increases with loading rate. By using these deformation characteristics, the deformation of the thermoplastic laminates can be controlled in stamping or other plastic forming processes for thermoplastic fiber metal laminates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA