Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
J Transl Med ; 22(1): 183, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378668

RESUMO

BACKGROUND: Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY: Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS: Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vß gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.


Assuntos
Linfócitos T CD8-Positivos , Miastenia Gravis Autoimune Experimental , Animais , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Linfócitos T Reguladores , Autoantígenos/metabolismo
2.
Appl Environ Microbiol ; : e0123724, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207158

RESUMO

Hydroxysteroid dehydrogenases (HSDHs) catalyze the oxidation/reduction of hydroxyl/keto groups of steroids with high regio- or stereoselectivity, playing an essential role in producing optically pure chemicals. In this work, a novel approach was developed to simultaneously improve the stability and activity of 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) by combining B-factor analysis and computer-aided prediction. Several advantageous mutants were identified, and the most promising variant, S51Y/P202Y, exhibited 2.3-fold improvements in catalytic activity, 3.3-fold in half-life at 40°C, and 4.7-fold in catalytic efficiency (kcat/Km), respectively. Structural modeling analysis showed that the shortened reversible oxidation reaction catalytic distance and the strengthened residue interactions compared to the wild type were attributed to the improved stability and activity of the obtained mutants. To synthesize ursodeoxycholic acid cost-effectively by mutant S51Y/P202Y, a NAD-kinase was employed to facilitate the substitution of nicotinamide adenine dinucleotide phosphate (NADP+) with nicotinamide adenine dinucleotide (NAD+) in the whole-cell catalysis system. The substrate 7-ketolithocholic acid (100 mM) was converted completely in 0.5 h, achieving a space-time yield of 1,887.3 g L-1 d-1. This work provided a general target-oriented strategy for obtaining stable and highly active dehydrogenase for efficient biosynthesis. IMPORTANCE: Hydroxysteroid dehydrogenases have emerged as indispensable tools in the synthesis of steroids, bile acids, and other steroid derivatives for the pharmaceutical and chemical industries. In this study, a novel approach was developed to simultaneously improve the stability and activity of a hydroxysteroid dehydrogenase by combining B-factor analysis and computer-aided prediction. This semi-rational method was demonstrated to be highly effective for enzyme engineering. In addition, NAD kinase was introduced to convert NAD+ to NADP+ for effective coenzyme regeneration in the whole-cell multienzyme-catalyzed system. This strategy reduces the significant economic costs associated with externally supplemented cofactors in NADP-dependent biosynthetic pathways.

3.
Appl Environ Microbiol ; 90(2): e0174023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193674

RESUMO

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Assuntos
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo
4.
Chemistry ; : e202402430, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039628

RESUMO

Although MoS2 quantum dots with abundant edge sites have been regarded as promising eletrode materials for the hydrogen evolution reaction (HER), their electrocatalytic capacity still requires improvements in actual applications. Herein. we demonstrate a controllable and robust bottom-up approach to build 3D crosslinked graphene-Ti3C2Tx MXene frameworks decorated with MoS2 quantum dots (MQD/RGO-MX) via a convenient co-assembly process. The novel structural design gives the MQD/RGO-MX nanoarchitectures a series of superior textural attributes, including 3D interconnected networks, continuous meso- and macropores, well-dispersed quantum dots, ameliorative electronic configuration, and excellent electrical conductivity. Accordingly, the resulting hybrid nanoarchitectures express superior electrocatalytic properties in terms of a low onset potential of only 45 mV, a small Tafel slope of 61 mV dec-1 as well as a long service life towards the HER, which make it quite competitive against bare MoS2 quantum dots, MXene as well as binary MQD/RGO and MQD/MXene electrocatalysts.

5.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822747

RESUMO

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Assuntos
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidase , Escherichia coli , Engenharia de Proteínas , D-Aminoácido Oxidase/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Engenharia de Proteínas/métodos , Animais , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
6.
J Org Chem ; 89(12): 8531-8536, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38838346

RESUMO

An effective multicomponent reaction for the synthesis of 4-phosphorylated 4H-chromenes via a tandem phosphorylation/alkylation/cyclization/dehydration sequence with water as the only byproduct was developed. Extensive mechanistic investigations involving in situ NMR experiments, time control experiments, and in situ HRMS experiment allowed us to elucidate the order of each subreaction to arrive at a complete understanding of the underlying mechanism of this multicomponent reaction. Mechanistic data confirm that the reaction begins with a phospha-aldol-elimination, followed by addition of a ketone enolate, intermolecular alkylation, intramolecular cyclization, and dehydration under acidic conditions.

7.
Org Biomol Chem ; 22(15): 3009-3018, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529785

RESUMO

Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.


Assuntos
Hidroxiesteroide Desidrogenases , Mutação Puntual , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Mutação , Catálise , Cinética
8.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880339

RESUMO

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Assuntos
Infarto do Miocárdio , Camundongos , Animais , Infarto do Miocárdio/metabolismo , Arritmias Cardíacas/genética , Miocárdio/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/metabolismo
9.
J Clin Periodontol ; 51(5): 558-570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38200631

RESUMO

AIM: To examine the impact of both individual and cumulative social determinants of health (SDoH) on the likelihood of developing periodontitis, while also exploring any gender disparities in this relationship. MATERIALS AND METHODS: Data of self-reported SDoH domains and sub-items based on Healthy People 2030 were obtained from the U.S. National Health and Nutrition Examination Surveys between 1999 and 2014. Logistic regression models, weighted by survey responses, were used to examine the relationship between SDoH (including eight sub-items and the cumulative number of unfavourable SDoH) and periodontitis. The results were further analysed by gender. RESULTS: A total of 18,075 participants (8867 males and 9208 females) were included in the main analysis, of which 5814 (32.2%) had periodontitis. The study found that certain unfavourable SDoH were individually associated with higher odds of periodontitis, and the cumulative number of unfavourable SDoH was positively linked to the odds of developing periodontitis. Furthermore, males exposed to more unfavourable SDoH appeared to be more susceptible to developing periodontitis than females. CONCLUSIONS: The findings suggest that unfavourable SDoH, especially when they accumulate, are associated with an increased odds of periodontitis and contribute to gender disparities within the U.S.


Assuntos
Periodontite , Determinantes Sociais da Saúde , Feminino , Masculino , Humanos , Inquéritos Nutricionais , Estudos Transversais , Modelos Logísticos , Periodontite/epidemiologia
10.
Nutr Metab Cardiovasc Dis ; 34(6): 1496-1507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658226

RESUMO

BACKGROUND AND AIMS: Engaging in recommended levels of physical activity (PA) is associated with reduced overall and cause-specific mortality rates. Our study aims to examine the relationship between gardening-specific PA and all-cause and cause-specific mortality based on representative U.S. adults. METHODS AND RESULTS: A total of 13,812 adults representing 663.5 million non-institutionalized U.S. adults were included in the National Health and Nutrition Examination Survey. Self-reported gardening activity (GA) was assessed by a validated questionnaire, and outcomes of interest were all-cause mortality and mortality specific to certain causes. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using survey-multivariable Cox proportional hazards models. During a median follow-up period of 16.8 years (Interquartile range = 14.8-18.7), there were 3,476 deaths. After adjusting for potential covariates, we found that participants exposed to GA were more likely to have a lower risk of total mortality [HR (95% CI): 0.76 (0.68, 0.85), P-value < 0.001], cancer-specific mortality [HR (95% CI): 0.81 (0.67, 0.99), P-value < 0.05], cardiovascular disease mortality [HR (95% CI): 0.65 (0.53, 0.80), P-value < 0.001], and respiratory disease mortality [HR (95% CI): 0.66 (0.45, 0.98), P-value < 0.05], compared to those without GA exposure. Furthermore, engaging in GA more frequently and for longer durations was significantly associated with a lower total mortality risk. CONCLUSION: Our study provides evidence that engaging in GA is associated with a decreased risk of overall and cause-specific mortality. However, further longitudinal or interventional studies are needed to investigate the potential benefits of GA.


Assuntos
Causas de Morte , Jardinagem , Inquéritos Nutricionais , Fatores de Proteção , Comportamento de Redução do Risco , Humanos , Masculino , Feminino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Fatores de Tempo , Medição de Risco , Idoso , Estilo de Vida Saudável
11.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709366

RESUMO

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Saccharomycetales/genética , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Dosagem de Genes , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Expressão Gênica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
12.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289384

RESUMO

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Assuntos
Aminobutiratos , Escherichia coli , Transaminases , Transaminases/genética , Escherichia coli/genética , Ácido Butírico , Glucose 1-Desidrogenase , Ácido Glutâmico
13.
BMC Palliat Care ; 23(1): 155, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902684

RESUMO

OBJECTIVE: Explore the feasibility of a mobile health(mHealth) and virtual reality (VR) based nutrition-exercise-psychology integrated rehabilitation model in Chinese cancer patients. METHODS: We recruited cancer patients in the Oncology department of the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University from October 2022 to April 2023. The rehabilitation program was provided by a team of medical oncologists, dietitians, psychotherapists, and oncology specialist nurses. Participants received standard anti-cancer therapy and integrated intervention including hospitalized group-based exercise classes, at-home physical activity prescription, behavior change education, oral nutrition supplements, and psychological counseling. An effective intervention course includes two consecutive hospitalization and two periods of home-based rehabilitation (8 weeks). Access the feasibility as well as changes in aspects of physical, nutritional, and psychological status. RESULTS: At the cutoff date of April 2023, the recruitment rate was 75% (123/165). 11.4%patients were lost to follow-up, and 3.25% withdrew halfway. Respectively, the completion rate of nutrition, exercise, and psychology were 85%,55%, and 63%. Nutrition interventions show the highest compliance. The parameters in nutrition, psychology, muscle mass, and quality of life after the rehabilitation showed significant improvements (P < .05). There was no significant statistical difference (P > .05) in handgrip strength and 6-minute walking speed. CONCLUSION: It is feasible to conduct mHealth and VR-based nutrition-exercise-psychology integrated rehabilitation model in Chinese cancer patients. A larger multi-center trial is warranted in the future. TRIAL REGISTRATION: ChiCTR2200065748 Registered 14 November 2022.


Assuntos
Estudos de Viabilidade , Neoplasias , Telemedicina , Realidade Virtual , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias/psicologia , Neoplasias/reabilitação , Neoplasias/complicações , Estudos Prospectivos , Adulto , Idoso , Exercício Físico/psicologia , Terapia por Exercício/métodos , Terapia por Exercício/normas , Terapia por Exercício/psicologia , China
14.
J Basic Microbiol ; 64(1): 32-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699751

RESUMO

The morphological and structural differences of different types of chlamydospore of Arthrobotrys flagrans, a nematophagous fungus, were studied under light microscope and electron microscope to provide a reference for the biological control of parasitic nematodiasis. In this study, A. flagrans isolate F088 dormant chlamydospore and nondormant chlamydospore were selected as the research objects. The structural differences of these spores were observed by optical microscopy through lactol cotton blue, Trypan blue, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. FunXite -1, 4',6-diamidino-2-phenylindole, and calcofluor white staining were used to observe the metabolic activity, cell wall, and nucleus differences of the two types of spores under fluorescence microscope. Ultrastructure of the two kinds of spores was observed using scanning electron microscope (SEM) and transmission electron microscope (TEM). Since lacto phenol cotton blue, trypan blue staining cannot distinguish dormant spores from dead spores, MTT assay was performed. Fluorescence microscopy observation showed that the cytoplasmic metabolic activity of nondormant spores was stronger than that of dormant spores. The nucleus of dormant spores was bright blue, and their fluorescence was stronger than that of nondormant spores. The cell wall of nondormant spores produced stronger yellow-green fluorescence than that of dormant spores. Ultrastructural observation showed that there were globular protuberances on the surface of the two types of spores but with no significant difference between them. The inner wall of dormant spore possesses a thick zona pellucida with high electron density which was significantly thicker than that of nondormant spores, and their cytoplasm is also changed. In this study, the microstructure characteristics of dormant and nondormant chlamydospores of A. flagrans fungi were preliminarily clarified, suggesting that the state of cell wall and intracellular materials were changed after spores entered to dormancy.


Assuntos
Ascomicetos , Azul Tripano , Esporos Fúngicos , Fezes/microbiologia , Controle Biológico de Vetores
15.
Angew Chem Int Ed Engl ; : e202407384, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959168

RESUMO

Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.

16.
Chembiochem ; 24(12): e202300165, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37170827

RESUMO

We developed a synthetic route for producing 3-amino-2-hydroxy acetophenone (3AHAP) from m-nitroacetophenone (3NAP) using an in vitro approach. Various reaction systems were evaluated, and a direct reaction method with crude enzyme and supersaturated substrates for optimal catalytic efficiency was chosen. The reaction system included three enzymes and was enhanced by adjusting enzyme molar ratios and optimizing ribosomal binding sites. We performed substrate docking and alanine scanning to identify key sites in the enzymes nitrobenzene nitroreductase (nbzA) and hydroxylaminobenzene mutase (habA). The optimal mutant was obtained through site-directed mutagenesis, and incorporated into the reaction system, resulting in increased product yield. After optimization, the yield of 3AHAP increased from 75 mg/L to 580 mg/L within 5 hours, the highest reported yield using biosynthesis. This work provides a promising strategy for the efficient and sustainable production of 3AHAP, which has critical applications in the chemical and pharmaceutical industries.


Assuntos
Acetofenonas , Biossíntese de Proteínas , Catálise , Acetofenonas/metabolismo
17.
Appl Environ Microbiol ; 89(11): e0110623, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37902313

RESUMO

IMPORTANCE: The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.


Assuntos
Trifosfato de Adenosina , Escherichia coli , Análise Custo-Benefício , Cytophaga , Regeneração , Adenosina
18.
Chemistry ; 29(32): e202203351, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36943394

RESUMO

In recent years, the synthesis of C-aryl glycosides hrough C-H functionalization has attracted extensive attention of organic synthesis chemists due to its steps and atomic economy. In this concept, we systematically summarizes the synthesis of C-aryl glycosides with diverse regioselectivity and diastereoselectivity from the perspective of C-H arylation of glycosides and C-H glycosylation of arenes. It can be found that a series of recently developed C-H glycosylation reactions have higher site-selectivity and diastereomeric selectivity than Friedel-Crafts glycosylation reaction. The reaction conditions are milder, which can be compatible with acid-sensitive protective groups, such as acetals or ketals, and the deprotection is more convenient. It can be seen that there are few reports on remote C-H glycosylation of aromatic hydrocarbons, which is a new field and needs further research. In addition, C-H glycosylation has a lot of shortcomings, which need to be further explored: a) the precise regulation of stereoselectivity in the reaction process also needs further optimization; b) the research on the reaction mechanism is almost limited to DFT calculation, and there is no exact experimental evidence. For key parts, such as the specific reaction mechanism between cyclo-metal intermediates and glycosyl donors in ortho-CAr -H glycosylation is still unclear; c) due to the fact that aryl glycoside compounds contain bare hydroxyl groups in practical applications, it is an urgent problem to realize the compatibility of glycoside substrates containing naked hydroxyl groups or to remove the protective groups on hydroxyl groups by a mild and efficient method after the reaction; d) In this rapidly developing field, we need to study a greener, more economical and more practical C-H glycosylation of arenes in the future, which will be conducive to the synthesis of C-aryl glycosides with more biological application significance.


Assuntos
Glicosídeos , Metais , Glicosídeos/química , Glicosilação , Técnicas de Química Sintética/métodos
19.
Biotechnol Bioeng ; 120(10): 2940-2952, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227020

RESUMO

2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Assuntos
Escherichia coli , Transaminases , Transaminases/genética , Transaminases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Aminoácidos/metabolismo
20.
J Org Chem ; 88(23): 16216-16228, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967376

RESUMO

An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA