Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 241: 114012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850743

RESUMO

Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.


Assuntos
Neoplasias da Mama , Ácidos Docosa-Hexaenoicos , Doxorrubicina , Peroxidação de Lipídeos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/química , Células MCF-7 , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Animais , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/síntese química , Camundongos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Porfirinas
2.
Colloids Surf B Biointerfaces ; 173: 907-917, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30551309

RESUMO

Lung is one of important organs and lung diseases seriously affect the health of human beings. In this study, chitosan and gelatin as natural biological macromolecules raw material for the synthesis of ordered colloidal crystal scaffolds (CCS), Fe3O4 magnetic nanoparticles (MNPs) were used as pore-making for the first time. The pore-making agent were added into the hydrogels to synthesis the ordered (magnetic field) and disordered (no magnetic field) CCS. Collagen and basic fibroblast growth factor (bFGF) modified on the surface of CCS. Then mouse lung epithelial cells (TC-1) and normal human bronchial epithelial cells (Beas-2B) were cultured on the scaffold, obviously induced cell proliferation. Various physical and chemical characteristics indicate that the preparation of scaffolds and modified growth factors can greatly promote the proliferation of these two cells. In addition, the scafolld was implanted into the SD rat in vivo, and routine blood tests showed that the stent had a small inflammatory response to the rat. This may be one of the effective strategies for the future treatment of lung injury repair.


Assuntos
Coloides/química , Células Epiteliais/citologia , Pulmão/citologia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis , Brônquios/citologia , Proliferação de Células , Células Cultivadas , Quitosana/química , Colágeno/química , Cristalização , Feminino , Gelatina/química , Humanos , Inflamação , Teste de Materiais , Camundongos , Nanopartículas/química , Porosidade , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Temperatura , Engenharia Tecidual/métodos
3.
Nanomaterials (Basel) ; 8(12)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513749

RESUMO

The study reports a facile and eco-friendly approach for nanomaterial synthesis and enzyme immobilization. A corresponding glucose biosensor was fabricated by immobilizing the gold nanoparticles (AuNPs) and glucose oxidase (GOD) multilayer films onto the polypyrrole (PPy)/reduced graphene oxide (RGO) modified glassy carbon electrode (GCE) via the electrodeposition and self-assembly. PPy and graphene oxide were first coated on the surface of a bare GCE by the electrodeposition. Then, AuNPs and GOD were alternately immobilized onto PPy-RGO/GCE electrode using the electrodeposition of AuNPs and self-assembly of GOD to obtain AuNPs-GOD multilayer films. The resulting PPy-RGO-(AuNPs-GOD)n/GCE biosensors were used to characterize and assess their electrocatalytic activity toward glucose using cyclic voltammetry and amperometry. The response current increased with the increased number of AuNPs-GOD layers, and the biosensor based on four layers of AuNPs-GOD showed the best performance. The PPy-RGO-(AuNPs-GOD)4/GCE electrode can detect glucose in a linear range from 0.2 mM to 8 mM with a good sensitivity of 0.89 µA/mM, and a detection limit of 5.6 µM (S/N = 3). This study presents a promising eco-friendly biosensor platform with advantages of electrodeposition and self-assembly, and would be helpful for the future design of more complex electrochemical detection systems.

4.
ACS Appl Mater Interfaces ; 10(10): 8451-8464, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436216

RESUMO

Using external methods to induce the death of cancer cells is recognized as one of the main strategies for cancer treatment. Research indicated that TNF-α is frequently used in tumor biotherapy while IFN-γ can directly inhibit tumor cell proliferation. In our study, TNF-α and IFN-γ were coimmobilized on polystyrene material (PSt) or Fe3O4-oleic acid nanoparticles (NPs). Then the structural change of these two proteins can be observed. Meanwhile, the expressions of both TNF-α and IFN-α increased significantly, as determined by gene microarray analysis; however, in the presence of TNF-α plus IFN-α inhibitors, TNF-α and IFN-α did not increase in HeLa cells induced by coimmobilized IFN-γ plus TNF-α. Our results indicate that such change can stimilate HeLa cells to secrete more TNF-α and IFN-α, by which the apoptosis of HeLa cells could be further induced. This study is the first report of autocrine-induced apoptosis of HeLa cells. In addition, we performed ELISA, RT-PCR, flow cytometry, and Western blot analyses, as well as a series of analytical tests at the animal level. our data also indicate that the PSt-coimmobilized IFN-γ plus TNF-α has apparent effects for cancer treatment in vivo, which is of great significance for translation into clinical medicine.


Assuntos
Apoptose , Animais , Comunicação Autócrina , Materiais Biocompatíveis , Feminino , Células HeLa , Humanos , Interferon gama , Fator de Necrose Tumoral alfa , Neoplasias do Colo do Útero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA