Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(46): 31804-31812, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966055

RESUMO

Interface engineering of the organo-lead halide perovskite devices has shown the potential to improve their efficiency and stability. In this study, the atomic, electronic, optical and transport characteristics of MAPbI3/Ga2O3 and MAPbCl3/Ga2O3 interfaces were investigated by using first-principles calculations. Eight different interfacial models were established and the interfacial properties were discussed. The results show that the PbI/O configuration exhibits the largest bonding strength out of all eight interfacial configurations. Owing to the larger interfacial interaction, the charge transfer at the PbI/O interface is significantly more than that at the other interfaces. The analysis of absorption spectra indicates that the Ga-terminated perovskite/Ga2O3 heterostructures are expected to have great potential for efficient optoelectronic applications. The analysis of transmission spectra shows that the MA/O configurations with more transmission peaks near the Fermi level exhibit lower resistance compared to others. The results of our study could help understand the interfacial engineering mechanism between perovskite and Ga2O3.

2.
J Chem Phys ; 147(12): 124702, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964013

RESUMO

Hybrid perovskites are promising materials for high-performance photovoltaics. Unfortunately, hybrid perovskites readily decompose in particular under humid conditions, and the mechanisms of this phenomenon have not yet been fully understood. In this work, we systematically studied the possible mechanisms and the structural properties during the initial decomposition process of MAPbI3 (MA = CH3NH3+) using first-principles calculations. The theoretical results show that it is energetically favorable for PbI2 to nucleate and crystalize from the MAPbI3 matrix ahead of other decomposition products. Additionally, the structural instability is an intrinsic property of MAPbI3, regardless of whether the system is exposed to humidity. We find that H2O could facilitate the desorption of gaseous components, acting as a catalyst to transfer the H+ ion. These results provide insight into the cause of the instability of MAPbI3 and may improve our understanding of the properties of hybrid perovskites.

3.
ACS Omega ; 7(45): 40929-40940, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406488

RESUMO

As a large family of two-dimensional materials, MXenes have attracted intensive attention in recent years. For more functional applications, it is of great significance to determine new MXene members. Here, we theoretically expand the M elements of MXenes to the lanthanide series. Based on density functional theory calculations, the bare lanthanide-based carbides M2C (M = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) and the corresponding fluorine- and hydroxyl-terminated configurations are investigated. Most of the fluorine- and hydroxyl-terminated MXenes investigated are half-metals. Specifically, in the half-metallic Eu2CF2, the spin-down states show a band gap larger than 2 eV, implying this configuration's potential applications in spin generation and injection. Both Gd2CT2 (T = F and OH) are magnetic semiconductors. The former shows an indirect band gap of 1.38 eV, while the latter presents a direct one of 0.882 eV. These two configurations also show large magnetic moments higher than 13.7 µB per unit cell. All the hydroxyl-terminated MXene members show relatively low work functions, with the lowest value of 1.46 eV determined in Tm2C(OH)2. These predicted electronic properties imply that the lanthanide-based MXenes could have potential applications in spintronics, information storage, near-infrared detectors, field effect transistors, and field emitter cathodes.

4.
ACS Appl Mater Interfaces ; 12(2): 3134-3139, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851484

RESUMO

Very recently, freestanding crystalline perovskite films as thin as a single unit cell have been successfully synthesized, which expands the opportunities for research and applications of low-dimensional materials with novel functionalities. In this work, we constructed a series of two-dimensional (2D) (001) LaAlO3/SrTiO3 heterostructures and systematically investigated their atomic and electronic properties by means of first-principles calculations. Our results show that (1) nonstoichiometry leads to ferromagnetism at the interfaces of the systems; (2) half-metallicity can be realized by introducing slight hole-doping; and (3) a semiconductor-to-metal transition can be triggered by applying a moderate (within 3%) out-of-plane strain. Besides, based on in-depth analysis of the electronic structures, we propose that the orbital hybridization of interfacial O and Ti atoms may play a crucial role in determining the above interesting phenomena. Our findings are expected to stimulate further experimental researches on the related 2D perovskite heterostructures and to be beneficial for the design of new multifunctional electronic devices.

5.
Nanomaterials (Basel) ; 9(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266249

RESUMO

To evaluate the influence of transition metal substituents on the characteristics of CH3NH3PbI3/TiO2, we investigated the geometrical and electronic properties of transition metal-substituted CH3NH3PbI3/TiO2 by first-principles calculations. The results suggested that the substitution of Ti4+ at the five-fold coordinated (Ti5c) sites by transition metals is energetically favored. The substituted interface has enhanced visible light sensitivity and photoelectrocatalytic activity by reducing the transition energies. The transition metal substitution can effectively tune the band gap of the interface, which significantly improves the photo-reactivity. The substituted systems are expected to be more efficient in separating the photo-generated electrons-holes and active in the visible spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA