Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(14): 145712, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31860893

RESUMO

Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) exhibit fascinating quantum effects, such as charge-density-wave (CDW) and weak antilocalization (WAL) effect. Herein, low temperature synthesis of 1T phase VSe2 single crystals with thickness ranging from 3 to 41 nm by chemical vapor deposition (CVD) is reported. The VSe2 shows a decreasing phase transition temperature of the CDW when the thickness is decreased. Moreover, low-temperature magnetotransport measurements demonstrate a linear positive and non-saturating magnetoresistance (MR) of 35% from a 35 nm thick VSe2 at 15 T and 2 K due to CDW induce mobility fluctuations. Surprisingly, Kohler's rule analysis of the MR reveals the non-applicability of Kohler's rule for temperature above 50 K indicating that the MR behavior cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Furthermore, WAL effect is observed in the 4.2 nm thick VSe2 at low magnetic fields at 2 K, revealing the contribution of the quantum interference effect at the 2D limit. The phase coherence length [Formula: see text] and spin-orbit scattering length [Formula: see text] were determined to be 73 nm and 18 nm at 2 K, respectively. Our work opens new avenues to study the fundamental quantum phenomena in CVD-deposited TMDs.

2.
Nano Lett ; 19(12): 8572-8580, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702927

RESUMO

We report the chemical vapor deposition (CVD) growth, characterization, and low-temperature magnetotransport of 1T phase multilayer single-crystalline VTe2 nanoplates. The transport studies reveal that no sign of intrinsic long-range ferromagnetism but localized magnetic moments exist in the individual multilayer metallic VTe2 nanoplates. The localized moments give rise to the Kondo effect, evidenced by logarithmical increment of resistivity with decreasing temperature and negative magnetoresistance (NMR) regardless of the direction of magnetic field at temperatures below the resistivity minimum. The low-temperature resistivity upturn is well described by the Hamann equation, and the NMR at different temperatures, a manifestation of the magnetization of the localized spins, is well fitted to a Brillouin function for S = 1/2. Density functional theory calculations reveal that the localized magnetic moments mainly come from the interstitial vanadium ions in the VTe2 nanoplates. Our results will shed light on the study of magnetic properties, strong correlation, and many-body physics in two-dimensional metallic transition metal dichalcogenides.

3.
Proc Natl Acad Sci U S A ; 109(21): 7992-6, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22509001

RESUMO

Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 µm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/µm, demonstrating their good conductivity and capability for carrying high current density.


Assuntos
Cobre/química , Cristalização/métodos , Eletrônica/métodos , Grafite/química , Nanotecnologia/métodos , Teste de Materiais , Nanoestruturas/química , Tamanho da Partícula , Quartzo/química , Propriedades de Superfície
4.
Small ; 10(15): 2975-91, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24715648

RESUMO

Graphene is a wonder material with the ultimate smallest thickness that is readily accessible to various approaches for engineering its excellent properties. Graphene doping is an efficient way to tailor its electric properties and expand its applications. This topic covers wide research fields and has been developing rapidly. This article presents a broad and comprehensive overview of the developments in the preparation and applications of doped graphene including doping methods, doping levels, doping effect and types of heteroatoms. Very recent advances are also presented. In addition, existing problems in terms of achieving greater control over and further developments of doped graphene are also discussed.

5.
Phys Chem Chem Phys ; 16(38): 20392-7, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25146414

RESUMO

Large-area substitutional phosphorus-nitrogen co-doped monolayer graphene is directly synthesized on a Cu surface by chemical vapor deposition using molecules of phosphonitrilic chloride trimer as the phosphorus and nitrogen sources. The doping levels of both phosphorus and nitrogen atoms decrease as a function of the growth temperature. In contrast, the doping effect is enhanced with temperature because of the formation of more stable bond configurations for dopants at higher temperatures. Moreover, the doping amount of nitrogen atoms is always higher than that of phosphorus atoms at all used temperatures. The phosphorus and nitrogen co-doped graphene exhibits remarkable air-stable n-type characteristics. This work demonstrates the critical role of phosphorus atoms in achieving enhanced electron donation compared to nitrogen atom doping of graphene, and is important for various applications associated with the need for air-stable n-type graphene materials.

6.
J Am Chem Soc ; 135(17): 6431-4, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23586921

RESUMO

An anisotropic etching mode is commonly known for perfect crystalline materials, generally leading to simple Euclidean geometric patterns. This principle has also proved to apply to the etching of the thinnest crystalline material, graphene, resulting in hexagonal holes with zigzag edge structures. Here we demonstrate for the first time that the graphene etching mode can deviate significantly from simple anisotropic etching. Using an as-grown graphene film on a liquid copper surface as a model system, we show that the etched graphene pattern can be modulated from a simple hexagonal pattern to complex fractal geometric patterns with sixfold symmetry by varying the Ar/H2 flow rate ratio. The etched fractal patterns are formed by the repeated construction of a basic identical motif, and the physical origin of the pattern formation is consistent with a diffusion-controlled process. The fractal etching mode of graphene presents an intriguing case for the fundamental study of material etching.

7.
Small ; 9(8): 1330-5, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23463696

RESUMO

Flake graphite is used as carbon source and ZnO or ZnS as catalyst in the synthesis of high-quality graphene sheets. A catalytic growth mechanism for cathode-part graphene synthesis in the arc-discharge apparatus and an exfoliation mechanism for wall-part graphene synthesis are introduced. N-doped cathode-part graphene and undoped wall-part graphene are formed simultaneously.

8.
J Am Chem Soc ; 134(27): 11060-3, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22721268

RESUMO

The ability to dope graphene is highly important for modulating electrical properties of graphene. However, the current route for the synthesis of N-doped graphene by chemical vapor deposition (CVD) method mainly involves high growth temperature using ammonia gas or solid reagent melamine as nitrogen sources, leading to graphene with low doping level, polycrystalline nature, high defect density and low carrier mobility. Here, we demonstrate a self-assembly approach that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C. These N-doped graphene domains have a dominated geometric structure of tetragonal-shape, reflecting the single crystal nature confirmed by electron-diffraction measurements. The electrical measurements of these graphene domains showed their high carrier mobility, high doping level, and reliable N-doped behavior in both air and vacuum.

9.
J Am Chem Soc ; 133(44): 17548-51, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21988639

RESUMO

We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO(2)) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric pressure. After high-temperature activation of the growth substrates in air, high-quality polycrystalline graphene is subsequently grown on SiO(2) by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO(2) substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V(-1) s(-1) in air and 472 cm(2) V(-1) s(-1) in N(2), which are close to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques.


Assuntos
Grafite/química , Oxigênio/química , Polímeros/síntese química , Dióxido de Silício/química , Cristalização , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Volatilização
10.
Adv Mater ; 33(17): e2008456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33759241

RESUMO

Layered iron chalcogenides (FeX, X = S, Se, Te) provide excellent platforms to study intertwined phase transitions, superconductivity, and magnetism. However, layered iron dichalcogenides (FeX2 , X = S, Se, Te) are rarely reported and their intrinsic properties are still unknown. Here, phase-pure layered iron diselenide (FeSe2 ) nanocrystals are epitaxially grown on mica by the sublimed-salt-assisted chemical vapor deposition method at atmospheric pressure. The layered atomic structure of FeSe2 is confirmed by X-ray diffraction and atomic-resolution scanning transmission electron microscopy. Electrical transport shows that the layered FeSe2 is a metal with high conductivity and a phase transition at ≈11 K. The phase transition manifests itself as a kink in the temperature-dependent resistivity, as well as anomalous magnetoresistance (MR) appearing around the phase-transition temperature. The MR changes from negative to positive, accompanied by large hysteresis near the phase-transition temperature upon cooling. The negative MR and hysteresis might originate from magnetic field suppression scattering of spin fluctuations and competition of magnetic interactions induced by the phase transition, respectively. Layered iron dichalcogenide will be potential candidate to explore novel quantum phenomena and other applications.

11.
Bioorg Med Chem Lett ; 20(18): 5532-5, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20692830

RESUMO

Using iron(III)porphyrins in combination with (diacetoxyiodo)benzene allows for the conversion of 2,9-bis(bromomethyl)-4,7-diphenyl-1,10-phenanthroline into 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid. This method provides a cost-effective and environmentally-friendly oxidation procedure using less toxic PhI(OAc)2 and biologically relevant iron(III)porphyrins. The catalytic activity of five kinds of iron-metallated functional porphyrins were investigated using different oxidants, including air, H2O2, PhI(OAc)2, PhIO and NaClO. Our results showed that the use of T(p-NO2)PPFeCl with PhI(OAc)2 as the oxidant in the presence of water displays remarkable activity for the desired oxidation reaction. The generality of this method was examined by synthesizing the carboxylic acids of pyridines and quinolines.


Assuntos
Benzeno/química , Compostos Férricos/química , Fenantrolinas/química , Porfirinas/química , Catálise , Oxirredução
12.
ACS Nano ; 14(9): 11473-11481, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32885946

RESUMO

Different from layered two-dimensional (2D) transition metal dichalcogenides (TMDs), iron dichalcogenides crystallize in the most common three-dimensional pyrite or marcasite structures. Layered iron dichalcogenides are rarely reported and little is known about their structures and properties. Here, layered hexagonal phase iron ditelluride FeTe2 (h-FeTe2) nanocrystals are grown on mica by atmospheric pressure chemical vapor deposition (APCVD) method and are fully characterized by various methods. Like other 2D layered TMD materials, the FeTe2 nanoflakes exhibit regular hexagon, half hexagon, or triangle shapes with a controllable thickness of 6-95 nm and lateral length from a few to tens of micrometers. A simple and effective method is used to transfer the FeTe2 nanoflakes from the mica substrate onto any other substrates without quality deterioration by using polystyrene (PS) as a support polymer, which can also be operated in ethanol or ethylene glycol in a glovebox to avoid contact with water and air. Temperature-dependent electrical transport demonstrates that the FeTe2 nanoflake is a semiconductor with a variable range hopping (VRH) conduction, and its nonsaturated linear magnetoresistance (MR) reaches up to 10.4% under magnetic field of 9 T at 2 K, both probably due to its structure disorders. No signature of magnetic ordering is observed down to 2 K. The CVD growth of this layered FeTe2 represents an addition to the extensive library of 2D materials, particularly iron chalcogenides or alloys. Synthesis, properties, and even doping of phase pure h-FeTe2 call for further study in the future.

13.
ACS Nano ; 13(5): 5335-5343, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31017755

RESUMO

In this work, we show how domain-engineered lithium niobate can be used to selectively dope monolayer molybdenum selenide (MoSe2) and tungsten selenide (WSe2) and demonstrate that these ferroelectric domains can significantly enhance or inhibit photoluminescence (PL), with the most dramatic modulation occurring at the heterojunction interface between two domains. A micro-PL and Raman system is used to obtain spatially resolved images of the differently doped transition metal dichalcogenides (TMDs). The domain-inverted lithium niobate causes changes in the TMDs due to electrostatic doping as a result of the remnant polarization from the substrate. Moreover, the differently doped TMDs (n-type MoSe2 and p-type WSe2) exhibit opposite PL modulation. Distinct oppositely charged domains were obtained with a 9-fold PL enhancement for the same single MoSe2 sheet when adhered to the positive (P+) and negative (P-) domains. This sharp PL modulation on the ferroelectric domain results from different free electron or hole concentrations in the material's conduction band or valence band. Moreover, excitons dissociate rapidly at the interface between the P+ and P- domains due to the built-in electric field. We are able to adjust the charge on the P+ and P- domains using temperature via the pyroelectric effect and observe rapid PL quenching over a narrow temperature range, illustrating the observed PL modulation is electronic in nature. This observation creates an opportunity to harness the direct bandgap TMD 2D materials as an active optical component for the lithium niobate platform using domain engineering of the lithium niobate substrate to create optically active heterostructures that could be used for photodetectors or even electrically driven optical sources on-chip.

14.
Nanomaterials (Basel) ; 8(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081503

RESUMO

Perovskites have recently attracted intense interests for optoelectronic devices application due to their excellent photovoltaic and photoelectric properties. The performance of perovskite-based devices highly depends on the perovskite material properties. However, the widely used spin-coating method can only prepare polycrystalline perovskite and physical vapor deposition (PVD) method requires a higher melting point (>350 °C) substrate due to the high growth temperature, which is not suitable for low melting point substrates, especially for flexible substrates. Here, we present the controlled synthesis of high quality two-dimensional (2D) perovskite platelets on random substrates, including SiO2/Si, Si, mica, glass and flexible polydimethylsiloxane (PDMS) substrates, and our method is applicable to any substrate as long as its melting point is higher than 100 °C. We found that the photoluminescence (PL) characteristics of perovskite depend strongly on the platelets thickness, namely, thicker perovskite platelet has higher PL wavelength and stronger intensity, and thinner perovskite exhibits opposite results. Moreover, photodetectors based on the as-produced perovskite platelets show excellent photoelectric performance with a high photoresponsivity of 8.3 A·W-1, a high on/off ratio of ~10³, and a small rise and decay time of 30 and 50 ms, respectively. Our approach in this work provides a feasible way for making 2D perovskite platelets for wide optoelectronic applications.

15.
Chem Commun (Camb) ; 52(94): 13637-13655, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27747321

RESUMO

Metal-halide perovskites have been hailed as remarkable materials for photovoltaic devices and, recently, their star has also been on the rise in optoelectronics and photonics. In particular, the optical properties of a metal-halide perovskite can be widely manipulated once its bulk structure has been reduced to a low-dimensional structure, allowing multiple functionalities of light generation, emission, transmission, and detection to be realized in one material. In this paper, we highlight the recent advances in the synthesis of low-dimensional metal-halide perovskites and their unique properties as well as their novel optoelectronic and photonic applications. It is anticipated that this review can serve as an overview and evaluation of state-of-the-art synthesis techniques as well as nanoscale optoelectronics and photonics based on low-dimensional perovskite nanocrystals.

16.
Nanoscale ; 8(12): 6258-64, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26508593

RESUMO

Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

17.
ACS Nano ; 10(3): 3536-42, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26910395

RESUMO

Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

18.
ACS Nano ; 10(1): 573-80, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26647019

RESUMO

Vertical heterojunctions of two two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention recently. A variety of heterojunctions can be constructed by stacking different TMDs to form fundamental building blocks in different optoelectronic devices such as photodetectors, solar cells, and light-emitting diodes. However, these applications are significantly hampered by the challenges of large-scale production of van der Waals stacks of atomically thin materials. Here, we demonstrate scalable production of periodic patterns of few-layer WS2, MoS2, and their vertical heterojunction arrays by a thermal reduction sulfurization process. In this method, a two-step chemical vapor deposition approach was developed to effectively prevent the phase mixing of TMDs in an unpredicted manner, thus affording a well-defined interface between WS2 and MoS2 in the vertical dimension. As a result, large-scale, periodic arrays of few-layer WS2, MoS2, and their vertical heterojunctions can be produced with desired size and density. Photodetectors based on the as-produced MoS2/WS2 vertical heterojunction arrays were fabricated, and a high photoresponsivity of 2.3 A·W(-1) at an excitation wavelength of 450 nm was demonstrated. Flexible photodetector devices using MoS2/WS2 heterojunction arrays were also demonstrated with reasonable signal/noise ratio. The approach in this work is also applicable to other TMD materials and can open up the possibilities of producing a variety of vertical van der Waals heterojunctions in a large scale toward optoelectronic applications.

19.
ACS Nano ; 10(7): 7031-8, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27386731

RESUMO

Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

20.
Sci Rep ; 5: 11830, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26137854

RESUMO

Molybdenum disulphide (MoS2), which is a typical semiconductor from the family of layered transition metal dichalcogenides (TMDs), is an attractive material for optoelectronic and photodetection applications because of its tunable bandgap and high quantum luminescence efficiency. Although a high photoresponsivity of 880-2000 AW(-1) and photogain up to 5000 have been demonstrated in MoS2-based photodetectors, the light absorption and gain mechanisms are two fundamental issues preventing these materials from further improvement. In addition, it is still debated whether monolayer or multilayer MoS2 could deliver better performance. Here, we demonstrate a photoresponsivity of approximately 10(4) AW(-1) and a photogain of approximately 10(7) electrons per photon in an n-n heterostructure photodetector that consists of a multilayer MoS2 thin film covered with a thin layer of graphene quantum dots (GQDs). The enhanced light-matter interaction results from effective charge transfer and the re-absorption of photons, leading to enhanced light absorption and the creation of electron-hole pairs. It is feasible to scale up the device and obtain a fast response, thus making it one step closer to practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA