Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(9): 1748-1767, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37095197

RESUMO

Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.


Assuntos
Neuralgia , RNA Circular , Camundongos , Animais , RNA Circular/metabolismo , Regulação para Baixo , DNA Helicases , Hiperalgesia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Neuralgia/etiologia
2.
J Neurosci ; 39(11): 2125-2143, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30651325

RESUMO

Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.


Assuntos
Proteínas Argonautas/genética , Dor Crônica/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Nociceptividade/fisiologia , RNA Circular/genética , Ubiquitina-Proteína Ligases/genética , Animais , Epigênese Genética , Inflamação/complicações , Inflamação/genética , Masculino , Camundongos , Medula Espinal/metabolismo
3.
Int J Neurosci ; 128(2): 125-132, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28866949

RESUMO

PURPOSE: The current study aims at investigating the downstream targets of spinal Annexin A10 in modulating neuropathic pain. MATERIALS AND METHODS: Paw withdrawal latency and paw withdrawal threshold were measured to evaluate the pain-associated behaviour in rats. The expression of spinal Annexin A10, phosphorylated-extracellular regulated kinase 1/2 and extracellular regulated kinase were detected by western blotting. The level of tumour necrosis factor-α and interleukine-1ß was tested by enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Chronic constrictive injury caused pain hypersensitivity in rats, along with increased expression of spinal Annexin A10, phosphorylated-extracellular regulated kinase 1/2, tumour necrosis factor-α and interleukine-1ß in rats. Knockdown of spinal Annexin A10 suppressed the chronic constrictive injury-induced hyperalgesia, and inhibited the chronic constrictive injury-induced increased expression of phosphorylated-extracellular regulated kinase 1/2, tumour necrosis factor-α and interleukine-1ß in the spinal cord. Inhibition of spinal extracellular regulated kinase activation decreased the release of tumour necrosis factor-α and interleukine-1ß, but did not change the increased expression of Annexin A10 caused by chronic constrictive injury. CONCLUSIONS: Annexin A10 contributed to the development of neuropathic pain by activating spinal extracellular regulated kinase signalling and the subsequent release of tumour necrosis factor-α and interleukine-1ß in the spinal cord.


Assuntos
Anexinas/metabolismo , Hiperalgesia/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Animais , Anexinas/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hiperalgesia/etiologia , Interleucina-1beta/metabolismo , Masculino , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Fosforilação , Estimulação Física , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
4.
J Neurosci ; 36(9): 2769-81, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937014

RESUMO

DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2. SIGNIFICANCE STATEMENT: Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.


Assuntos
Citosina/análogos & derivados , Metilação de DNA/genética , MicroRNAs/metabolismo , Dor/fisiopatologia , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética , Formaldeído/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Dor/induzido quimicamente , Dor/patologia , Fosfopiruvato Hidratase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Medula Espinal/metabolismo , Fatores de Tempo
5.
Anesthesiology ; 127(1): 147-163, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28437360

RESUMO

BACKGROUND: Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown. METHODS: The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund's adjuvant. Immunoblotting, immunohistochemistry, and behavioral tests were used to explore the downstream ten-eleven translocation methylcytosine dioxygenase-dependent signaling pathway. RESULTS: Complete Freund's adjuvant-induced nociception increased the mean levels (± SD) of spinal 5-hydroxymethylcytosine (178 ± 34 vs. 100 ± 21; P = 0.0019), ten-eleven translocation methylcytosine dioxygenase-1 (0.52 ± 0.11 vs. 0.36 ± 0.064; P = 0.0088), and ten-eleven translocation methylcytosine dioxygenase-3 (0.61 ± 0.13 vs. 0.39 ± 0.08; P = 0.0083) compared with levels in control mice (n = 6/group). The knockdown of ten-eleven translocation methylcytosine dioxygenase-1 or ten-eleven translocation methylcytosine dioxygenase-3 alleviated thermal hyperalgesia and mechanical allodynia, whereas overexpression cytosinethem in naïve mice (n = 6/group). Down-regulation of spinal ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 also reversed the increases in Fos expression (123 ± 26 vs. 294 ± 6; P = 0.0031; and 140 ± 21 vs. 294 ± 60; P = 0.0043, respectively; n = 6/group), 5-hydroxymethylcytosine levels in the Stat3 promoter (75 ± 16.1 vs. 156 ± 28.9; P = 0.0043; and 91 ± 19.1 vs. 156 ± 28.9; P = 0.0066, respectively; n = 5/group), and consequent Stat3 expression (93 ± 19.6 vs. 137 ± 27.5; P = 0.035; and 72 ± 15.2 vs. 137 ± 27.5; P = 0.0028, respectively; n = 5/group) in complete Freund's adjuvant-treated mice. CONCLUSIONS: This study reveals a novel epigenetic mechanism for ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 in the modulation of spinal nociceptive information via targeting of Stat3.


Assuntos
Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/fisiologia , Dioxigenases/metabolismo , Inflamação/fisiopatologia , Dor Nociceptiva/fisiopatologia , 5-Metilcitosina/metabolismo , Animais , Dor Crônica/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Medula Espinal/fisiopatologia
6.
J Neurosci ; 34(29): 9476-83, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031391

RESUMO

Emerging evidence has shown that miRNA-mediated gene expression modulation contributes to chronic pain, but its functional regulatory mechanism remains unknown. Here, we found that complete Freund's adjuvant (CFA)-induced chronic inflammation pain significantly reduced miRNA-219 (miR-219) expression in mice spinal neurons. Furthermore, the expression of spinal CaMKIIγ, an experimentally validated target of miR-219, was increased in CFA mice. Overexpression of spinal miR-219 prevented and reversed thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization induced by CFA. Concurrently, increased expression of spinal CaMKIIγ was reversed by miR-219 overexpression. Downregulation of spinal miR-219 in naive mice induced pain-responsive behaviors and increased p-NMDAR1 expression, which could be inhibited by knockdown of CaMKIIγ. Bisulfite sequencing showed that CFA induced the hypermethylation of CpG islands in the miR-219 promoter. Treatment with demethylation agent 5'-aza-2'-deoxycytidine markedly attenuated pain behavior and spinal neuronal sensitization, which was accompanied with the increase of spinal miR-219 and decrease of CaMKIIγ expression. Together, we conclude that methylation-mediated epigenetic modification of spinal miR-219 expression regulates chronic inflammatory pain by targeting CaMKIIγ.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dor Crônica , Epigênese Genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Medula Espinal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dor Crônica/etiologia , Dor Crônica/metabolismo , Dor Crônica/patologia , Ilhas de CpG/genética , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Medição da Dor , RNA Interferente Pequeno/farmacologia , Medula Espinal/patologia , Transdução Genética
7.
Mol Neurobiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865078

RESUMO

Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.

8.
Pain ; 162(7): 1960-1976, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34130310

RESUMO

ABSTRACT: The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.


Assuntos
Adenosina , Metiltransferases , Animais , Dor/genética , RNA , RNA Mensageiro
9.
CNS Neurosci Ther ; 24(10): 947-956, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29577638

RESUMO

AIM AND METHODS: Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms yet are incompletely defined. DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under inflammatory pain condition remain largely unknown. Here, we investigated how chemokine receptor CXCR4 expression is regulated by DNA methylation and how it contributes to inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. RESULTS: Intraplantar injection of CFA could not only induce significant hyperalgesia in rats, but also significantly increase the expression of CXCR4 mRNA and protein in the dorsal root ganglion (DRG). Intrathecal injection of CXCR4 antagonist AMD3100 significantly relieved hyperalgesia in inflammatory rats in a time- and dose-dependent manner. Bisulfite sequencing and methylation-specific PCR demonstrate that CFA injection led to a significant demethylation of CpG island at CXCR4 gene promoter. Consistently, the expression of DNMT3b was significantly downregulated after CFA injection. Online software prediction reveals three binding sites of p65 in the CpG island of CXCR4 gene promoter, which has confirmed by the chromatin immunoprecipitation assay, CFA treatment significantly increases the recruitment of p65 to CXCR4 gene promoter. Inhibition of NF-kB signaling using p65 inhibitor pyrrolidine dithiocarbamate significantly prevented the increases of the CXCR4 expression. CONCLUSION: Upregulation of CXCR4 expression due to promoter demethylation followed by increased recruitment of p65 to promoter of CXCR4 gene contributes to inflammatory hyperalgesia. These findings provide a theoretical basis for the treatment of chronic pain from an epigenetic perspective.


Assuntos
Desmetilação/efeitos dos fármacos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Inflamação/complicações , Receptores CXCR4/metabolismo , Regulação para Cima/fisiologia , Animais , Benzilaminas , Imunoprecipitação da Cromatina , Ciclamos , Adjuvante de Freund/toxicidade , Compostos Heterocíclicos/farmacologia , Inflamação/induzido quimicamente , Masculino , Medição da Dor , Limiar da Dor/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA