Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.695
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 24(2): 239-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604547

RESUMO

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Assuntos
Neoplasias Pulmonares , beta-Glucanas , Animais , Camundongos , Humanos , Imunidade Treinada , Macrófagos , Lisofosfolipídeos/metabolismo , Monócitos , Neoplasias Pulmonares/patologia , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Microambiente Tumoral
2.
Mol Cell ; 83(23): 4352-4369.e8, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016474

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death. Glutathione (GSH) peroxidase 4 (GPX4) and GSH-independent ferroptosis suppressor protein 1 (FSP1) have been identified as major defenses. Here, we uncover a protective mechanism mediated by GSH S-transferase P1 (GSTP1) by monitoring proteinomic dynamics during ferroptosis. Dramatic downregulation of GSTP1 is caused by SMURF2-mediated GSTP1 ubiquitination and degradation at early stages of ferroptosis. Intriguingly, GSTP1 acts in GPX4- and FSP1-independent manners by catalyzing GSH conjugation of 4-hydroxynonenal and detoxifying lipid hydroperoxides via selenium-independent GSH peroxidase activity. Genetic modulation of the SMURF2/GSTP1 axis or the pharmacological inhibition of GSTP1's catalytic activity sensitized tumor responses to Food and Drug Administration (FDA)-approved ferroptosis-inducing drugs both in vitro and in vivo. GSTP1 expression also confers resistance to immune checkpoint inhibitors by blunting ferroptosis. Collectively, these findings demonstrate a GPX4/FSP1-independent cellular defense mechanism against ferroptosis and suggest that targeting SMURF2/GSTP1 to sensitize cancer cells to ferroptosis has potential as an anticancer therapy.


Assuntos
Ferroptose , Neoplasias , Estados Unidos , Ferroptose/genética , Ubiquitinação , Regulação para Baixo , Glutationa , Peroxidases , Neoplasias/genética
3.
Nature ; 624(7992): 611-620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907096

RESUMO

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Assuntos
Senescência Celular , Quitinases , Microglia , Neurônios Motores , Primatas , Medula Espinal , Animais , Humanos , Biomarcadores/metabolismo , Quitinases/metabolismo , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Primatas/metabolismo , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Medula Espinal/metabolismo , Medula Espinal/patologia
4.
Proc Natl Acad Sci U S A ; 121(11): e2312400121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437571

RESUMO

The projected changes in the hydrological cycle under global warming remain highly uncertain across current climate models. Here, we demonstrate that the observational past warming trend can be utilized to effectively co1nstrain future projections in mean and extreme precipitation on both global and regional scales. The physical basis for such constraints relies on the relatively constant climate sensitivity in individual models and the reasonable consistency of regional hydrological sensitivity among the models, which is dominated and regulated by the increases in atmospheric moisture. For the high-emission scenario, on the global average, the projected changes in mean precipitation are lowered from 6.9 to 5.2% and those in extreme precipitation from 24.5 to 18.1%, with the inter-model variances reduced by 31.0 and 22.7%, respectively. Moreover, the constraint can be applied to regions in middle-to-high latitudes, particularly over land. These constraints result in spatially resolved corrections that deviate substantially and inhomogeneously from the global mean corrections. This study provides regionally constrained hydrological responses over the globe, with direct implications for climate adaptation in specific areas.

5.
Proc Natl Acad Sci U S A ; 121(5): e2307515121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252833

RESUMO

Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.


Assuntos
Aminoácidos , Caenorhabditis elegans , Animais , Acilação , Ácidos Graxos , Hidroxilamina , Hidroxilaminas
6.
Proc Natl Acad Sci U S A ; 121(37): e2405107121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236244

RESUMO

The outstanding mechanical properties, light weight, and biodegradability of cellulose nanofibrils (CNFs) make them promising components of renewable and sustainable next-generation reinforced composite biomaterials and bioplastics. Manufacturing CNFs at a pilot scale requires disc-refining fibrillation of dilute cellulose fibers in aqueous pulp suspensions to shear the fibers apart into their nanodimensional forms, which is, however, an energy-intensive process. Here, we used atomistic molecular dynamics (MD) simulation to examine media that might facilitate the reduction of interactions between cellulose fibers, thereby reducing energy consumption in fibrillation. The most suitable medium found by the simulations was an aqueous solution with 0.007:0.012 wt.% NaOH:urea, and indeed this was found in pilot-scale experiments to reduce the fibrillation energy by ~21% on average relative to water alone. The NaOH:urea-mediated CNFs have similar crystallinity, morphology, and mechanical strength to those formed in water. The NaOH and urea act synergistically on CNFs to aid fibrillation but at different length scales. NaOH deprotonates hydroxyl groups leading to mesoscale electrostatic repulsion between fibrils, whereas urea forms hydrogen bonds with protonated hydroxyl groups thus disrupting interfibril hydrogen bonds. This suggests a general mechanism in which an aqueous medium that contains a strong base and a small organic molecule acting as a hydrogen-bond acceptor and/or donor may be effectively employed in materials processes where dispersion of deprotonable polymers is required. The study demonstrates how atomic-detail computer simulation can be integrated with pilot-scale experiments in the rational design of materials processes for the circular bioeconomy.

7.
N Engl J Med ; 389(21): 1935-1948, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937763

RESUMO

BACKGROUND: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that is selective for EGFR-TKI-sensitizing and EGFR T790M resistance mutations. Evidence suggests that the addition of chemotherapy may extend the benefits of EGFR-TKI therapy. METHODS: In this phase 3, international, open-label trial, we randomly assigned in a 1:1 ratio patients with EGFR-mutated (exon 19 deletion or L858R mutation) advanced non-small-cell lung cancer (NSCLC) who had not previously received treatment for advanced disease to receive osimertinib (80 mg once daily) with chemotherapy (pemetrexed [500 mg per square meter of body-surface area] plus either cisplatin [75 mg per square meter] or carboplatin [pharmacologically guided dose]) or to receive osimertinib monotherapy (80 mg once daily). The primary end point was investigator-assessed progression-free survival. Response and safety were also assessed. RESULTS: A total of 557 patients underwent randomization. Investigator-assessed progression-free survival was significantly longer in the osimertinib-chemotherapy group than in the osimertinib group (hazard ratio for disease progression or death, 0.62; 95% confidence interval [CI], 0.49 to 0.79; P<0.001). At 24 months, 57% (95% CI, 50 to 63) of the patients in the osimertinib-chemotherapy group and 41% (95% CI, 35 to 47) of those in the osimertinib group were alive and progression-free. Progression-free survival as assessed according to blinded independent central review was consistent with the primary analysis (hazard ratio, 0.62; 95% CI, 0.48 to 0.80). An objective (complete or partial) response was observed in 83% of the patients in the osimertinib-chemotherapy group and in 76% of those in the osimertinib group; the median response duration was 24.0 months (95% CI, 20.9 to 27.8) and 15.3 months (95% CI, 12.7 to 19.4), respectively. The incidence of grade 3 or higher adverse events from any cause was higher with the combination than with monotherapy - a finding driven by known chemotherapy-related adverse events. The safety profile of osimertinib plus pemetrexed and a platinum-based agent was consistent with the established profiles of the individual agents. CONCLUSIONS: First-line treatment with osimertinib-chemotherapy led to significantly longer progression-free survival than osimertinib monotherapy among patients with EGFR-mutated advanced NSCLC. (Funded by AstraZeneca; FLAURA2 ClinicalTrials.gov number, NCT04035486.).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Compostos de Anilina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Pemetrexede/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/uso terapêutico
8.
Proc Natl Acad Sci U S A ; 120(49): e2306788120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032935

RESUMO

Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.


Assuntos
Parasitos , Toxoplasma , Animais , Internalização do Vírus , Fagocitose , Macrófagos , Fatores de Virulência
9.
Am J Pathol ; 194(7): 1262-1271, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38537933

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 patients with HCC and 75 patients with non-HCC conditions, using TaqMan real-time quantitative RT-PCR. Seven of the nine fusions frequently detected in patients with HCC included: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model resulted in 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizado de Máquina , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Adulto , Proteínas de Fusão Oncogênica/genética
10.
Proc Natl Acad Sci U S A ; 119(52): e2203200119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534807

RESUMO

Tropical forests contribute a major sink for anthropogenic carbon emissions essential to slowing down the buildup of atmospheric CO2 and buffering climate change impacts. However, the response of tropical forests to more frequent weather extremes and long-recovery disturbances like fires remains uncertain. Analyses of field data and ecological theory raise concerns about the possibility of the Amazon crossing a tipping point leading to catastrophic tropical forest loss. In contrast, climate models consistently project an enhanced tropical sink. Here, we show a heterogeneous response of Amazonian carbon stocks in GFDL-ESM4.1, an Earth System Model (ESM) featuring dynamic disturbances and height-structured tree-grass competition. Enhanced productivity due to CO2 fertilization promotes increases in forest biomass that, under low emission scenarios, last until the end of the century. Under high emissions, positive trends reverse after 2060, when simulated fires prompt forest loss that results in a 40% decline in tropical forest biomass by 2100. Projected fires occur under dry conditions associated with El Niño Southern Oscillation and the Atlantic Multidecadal Oscillation, a response observed under current climate conditions, but exacerbated by an overall decline in precipitation. Following the initial disturbance, grassland dominance promotes recurrent fires and tree competitive exclusion, which prevents forest recovery. EC-Earth3-Veg, an ESM with a dynamic vegetation model of similar complexity, projected comparable wildfire forest loss under high emissions but faster postfire recovery rates. Our results reveal the importance of complex nonlinear responses to assessing climate change impacts and the urgent need to research postfire recovery and its representation in ESMs.


Assuntos
Dióxido de Carbono , Incêndios , Florestas , Árvores , Carbono , Mudança Climática
11.
BMC Biol ; 22(1): 185, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218872

RESUMO

BACKGROUND: Scutellaria, a sub-cosmopolitan genus, stands as one of the Lamiaceae family's largest genera, encompassing approximately 500 species found in both temperate and tropical montane regions. Recognized for its significant medicinal properties, this genus has garnered attention as a research focus, showcasing anti-cancer, anti-inflammatory, antioxidant, and hepatoprotective qualities. Additionally, it finds application in agriculture and horticulture. Comprehending Scutellaria's taxonomy is pivotal for its effective utilization and conservation. However, the current taxonomic frameworks, primarily based on morphological characteristics, are inadequate. Despite several phylogenetic studies, the species relationships and delimitations remain ambiguous, leaving the genus without a stable and reliable classification system. RESULTS: This study analyzed 234 complete chloroplast genomes, comprising 220 new and 14 previously published sequences across 206 species, subspecies, and varieties worldwide. Phylogenetic analysis was conducted using six data matrices through Maximum Likelihood and Bayesian Inference, resulting in a robustly supported phylogenetic framework for Scutellaria. We propose three subgenera, recommending the elevation of Section Anaspis to subgeneric rank and the merging of Sections Lupulinaria and Apeltanthus. The circumscription of Subgenus Apeltanthus and Section Perilomia needs to be reconsidered. Comparative analysis of chloroplast genomes highlighted the IR/SC boundary feature as a significant taxonomic indicator. We identified a total of 758 SSRs, 558 longer repetitive sequences, and ten highly variable regions, including trnK-rps16, trnC-petN, petN-psbM, accD-psaI, petA-psbJ, rpl32-trnL, ccsA-ndhD, rps15-ycf1, ndhF, and ycf1. These findings serve as valuable references for future research on species identification, phylogeny, and population genetics. CONCLUSIONS: The phylogeny of Scutellaria, based on the most comprehensive sample collection to date and complete chloroplast genome analysis, has significantly enhanced our understanding of its infrageneric relationships. The extensive examination of chloroplast genome characteristics establishes a solid foundation for the future development and utilization of Scutellaria, an important medicinal plant globally.


Assuntos
Genoma de Cloroplastos , Filogenia , Scutellaria , Scutellaria/genética
12.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634773

RESUMO

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Assuntos
Hidrogéis , Hidrogéis/química , Humanos , Dispositivos Eletrônicos Vestíveis , Congelamento , Ligação de Hidrogênio , Eletricidade Estática , Condutividade Elétrica
13.
Diabetologia ; 67(4): 703-713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372780

RESUMO

AIMS/HYPOTHESIS: Gestational diabetes mellitus (GDM) is the most common disorder in pregnancy; however, its underlying causes remain obscure. This study aimed to investigate the genetic and molecular risk factors contributing to GDM and glycaemic traits. METHODS: We collected non-invasive prenatal test (NIPT) sequencing data along with four glycaemic and 55 biochemical measurements from 30,699 pregnant women during a 2 year period at Shenzhen Baoan Women's and Children's Hospital in China. Genome-wide association studies (GWAS) were conducted between genotypes derived from NIPTs and GDM diagnosis, baseline glycaemic levels and glycaemic levels after glucose challenges. In total, 3317 women were diagnosed with GDM, while 19,565 served as control participants. The results were replicated using two independent cohorts. Additionally, we performed one-sample Mendelian randomisation to explore potential causal associations between the 55 biochemical measurements and risk of GDM and glycaemic levels. RESULTS: We identified four genetic loci significantly associated with GDM susceptibility. Among these, MTNR1B exhibited the highest significance (rs10830963-G, OR [95% CI] 1.57 [1.45, 1.70], p=4.42×10-29), although its effect on type 2 diabetes was modest. Furthermore, we found 31 genetic loci, including 14 novel loci, that were significantly associated with the four glycaemic traits. The replication rates of these associations with GDM, fasting plasma glucose levels and 0 h, 1 h and 2 h OGTT glucose levels were 4 out of 4, 6 out of 9, 10 out of 11, 5 out of 7 and 4 out of 4, respectively. Mendelian randomisation analysis suggested that a genetically regulated higher lymphocytes percentage and lower white blood cell count, neutrophil percentage and absolute neutrophil count were associated with elevated glucose levels and an increased risk of GDM. CONCLUSIONS/INTERPRETATION: Our findings provide new insights into the genetic basis of GDM and glycaemic traits during pregnancy in an East Asian population and highlight the potential role of inflammatory pathways in the aetiology of GDM and variations in glycaemic levels. DATA AVAILABILITY: Summary statistics for GDM; fasting plasma glucose; 0 h, 1 h and 2h OGTT; and the 55 biomarkers are available in the GWAS Atlas (study accession no.: GVP000001, https://ngdc.cncb.ac.cn/gwas/browse/GVP000001) .


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Criança , Gravidez , Feminino , Humanos , Estudo de Associação Genômica Ampla , Gestantes , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Fatores de Risco
14.
BMC Genomics ; 25(1): 778, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127634

RESUMO

BACKGROUND: DNA sequencing is a critical tool in modern biology. Over the last two decades, it has been revolutionized by the advent of massively parallel sequencing, leading to significant advances in the genome and transcriptome sequencing of various organisms. Nevertheless, challenges with accuracy, lack of competitive options and prohibitive costs associated with high throughput parallel short-read sequencing persist. RESULTS: Here, we conduct a comparative analysis using matched DNA and RNA short-reads assays between Element Biosciences' AVITI and Illumina's NextSeq 550 chemistries. Similar comparisons were evaluated for synthetic long-read sequencing for RNA and targeted single-cell transcripts between the AVITI and Illumina's NovaSeq 6000. For both DNA and RNA short-read applications, the study found that the AVITI produced significantly higher per sequence quality scores. For PCR-free DNA libraries, we observed an average 89.7% lower experimentally determined error rate when using the AVITI chemistry, compared to the NextSeq 550. For short-read RNA quantification, AVITI platform had an average of 32.5% lower error rate than that for NextSeq 550. With regards to synthetic long-read mRNA and targeted synthetic long read single cell mRNA sequencing, both platforms' respective chemistries performed comparably in quantification of genes and isoforms. The AVITI displayed a marginally lower error rate for long reads, with fewer chemistry-specific errors and a higher mutation detection rate. CONCLUSION: These results point to the potential of the AVITI platform as a competitive candidate in high-throughput short read sequencing analyses when juxtaposed with the Illumina NextSeq 550.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Humanos , Análise de Célula Única/métodos , Biblioteca Gênica
15.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329948

RESUMO

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

16.
Curr Issues Mol Biol ; 46(2): 1291-1307, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392200

RESUMO

Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1ß, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.

17.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459187

RESUMO

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Camundongos Nus , MicroRNAs , RNA Circular , beta Catenina , MicroRNAs/genética , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , RNA Circular/genética , Animais , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , delta Catenina , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Movimento Celular/genética , Camundongos Endogâmicos BALB C
18.
N Engl J Med ; 385(12): 1067-1077, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34459569

RESUMO

BACKGROUND: Salt substitutes with reduced sodium levels and increased potassium levels have been shown to lower blood pressure, but their effects on cardiovascular and safety outcomes are uncertain. METHODS: We conducted an open-label, cluster-randomized trial involving persons from 600 villages in rural China. The participants had a history of stroke or were 60 years of age or older and had high blood pressure. The villages were randomly assigned in a 1:1 ratio to the intervention group, in which the participants used a salt substitute (75% sodium chloride and 25% potassium chloride by mass), or to the control group, in which the participants continued to use regular salt (100% sodium chloride). The primary outcome was stroke, the secondary outcomes were major adverse cardiovascular events and death from any cause, and the safety outcome was clinical hyperkalemia. RESULTS: A total of 20,995 persons were enrolled in the trial. The mean age of the participants was 65.4 years, and 49.5% were female, 72.6% had a history of stroke, and 88.4% a history of hypertension. The mean duration of follow-up was 4.74 years. The rate of stroke was lower with the salt substitute than with regular salt (29.14 events vs. 33.65 events per 1000 person-years; rate ratio, 0.86; 95% confidence interval [CI], 0.77 to 0.96; P = 0.006), as were the rates of major cardiovascular events (49.09 events vs. 56.29 events per 1000 person-years; rate ratio, 0.87; 95% CI, 0.80 to 0.94; P<0.001) and death (39.28 events vs. 44.61 events per 1000 person-years; rate ratio, 0.88; 95% CI, 0.82 to 0.95; P<0.001). The rate of serious adverse events attributed to hyperkalemia was not significantly higher with the salt substitute than with regular salt (3.35 events vs. 3.30 events per 1000 person-years; rate ratio, 1.04; 95% CI, 0.80 to 1.37; P = 0.76). CONCLUSIONS: Among persons who had a history of stroke or were 60 years of age or older and had high blood pressure, the rates of stroke, major cardiovascular events, and death from any cause were lower with the salt substitute than with regular salt. (Funded by the National Health and Medical Research Council of Australia; SSaSS ClinicalTrials.gov number, NCT02092090.).


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta Hipossódica , Hipertensão/dietoterapia , Acidente Vascular Cerebral/prevenção & controle , Idoso , Doenças Cardiovasculares/epidemiologia , China , Dieta Hipossódica/efeitos adversos , Feminino , Humanos , Hiperpotassemia/complicações , Hipertensão/complicações , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Mortalidade , Potássio na Dieta/efeitos adversos , Prevenção Secundária , Acidente Vascular Cerebral/epidemiologia
19.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166550

RESUMO

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Dormência de Plantas/genética , Perfilação da Expressão Gênica , Filogenia , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
20.
BMC Med ; 22(1): 366, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232779

RESUMO

BACKGROUND: Associations of dietary sodium and potassium intake with fracture risk are inconsistent and the effects of salt substitute on fracture incidence are unknown. We assessed the effect of salt substitute compared to regular salt intake on fracture incidence using data from the Salt Substitute and Stroke Study (SSaSS). METHODS: SSaSS was a cluster-randomized controlled trial conducted in 600 villages in northern China. Villages were randomly allocated into intervention and control groups in a 1:1 ratio. Salt substitute was provided to intervention villages and control villages continued regular salt use for 5 years. The primary outcome for this secondary analysis was the incidence of all fractures. Secondary outcomes included incidence of vertebral fracture, non-vertebral fracture, and fracture of unknown or non-specific location. RESULTS: 20,995 participants were included in this study, and 821 fractures occurred during follow-up. Intention-to-treat analyses showed no differences between the salt substitute and regular salt groups in the incidence of all fractures (rate ratio (RR) 0.96; 95% CI 0.81 to 1.14), vertebral fracture (RR 0.82; 95% CI 0.53 to 1.26), non-vertebral fracture (RR 1.05; 95% CI 0.86 to 1.29), or fracture of unknown or non-specific location (RR 0.80; 95% CI 0.54 to 1.18). CONCLUSIONS: Use of salt substitute compared to regular salt had no detectable effect on the incidence of fracture in a population at high risk of cardiovascular disease and fracture. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02092090. Registered on March 12, 2014.


Assuntos
Fraturas Ósseas , Cloreto de Sódio na Dieta , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Fraturas Ósseas/epidemiologia , Idoso , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/administração & dosagem , Incidência , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA