Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368965

RESUMO

Zinc (Zn) and iron (Fe) malnutrition are global health challenges that need immediate attention. Hence, to address these issues, a two-pronged approach involving the development and application of novel Zn and Fe products for crop fertilization may be a potential solution. Therefore, zinc oxide (ZnO) (∼13.2 nm) and ferric oxide (Fe2O3) (∼15 nm) nanoparticles (NPs) were synthesized and characterized. Seven nutrients treatments viz, control, ZnO- NPs (25 mg kg-1), Fe2O3-NPs (25 mg kg-1), ZnO + Fe2O3-NPs (25 mg kg-1each), ZnSO4 (55.8 mg kg-1), FeSO4 (60.4 mg kg-1) and ZnSO4+ FeSO4 (55.8 and 60.4 mg kg-1) were arranged in five-time replicated Completely Randomized Design model to test the effectiveness of ZnO and Fe2O3 NPs in two soybean cultivars over conventional zinc sulfate (ZnSO4) and ferrous sulfate (FeSO4) fertilizers. The results indicated that the photosynthetic rate (Pn) and chlorophyll content increased (33.9-86.2%) significantly at the flowering stage with ZnO and Fe2O3 NPs applications, compared to their conventional counterparts. Likewise, the combined application of ZnO and Fe2O3 NPs reduced H2O2 production by 17-19% and increased the superoxide dismutase (SOD) and catalase (CAT) activities by 15-17% and 9.6-11.4% over the combined use of ZnSO4 and FeSO4, respectively. The normalized difference vegetation index (NDVI) showed an increase of 6.9-44.2% under ZnO and Fe2O3 NPs, as well as ZnSO4 and FeSO4. Furthermore, the combined application of NPs enhanced soybean seed yield by 4.6-18.3% compared to conventional Zn and Fe fertilizers. Concerning seed Zn and Fe density, conjoint application of ZnO and Fe2O3 NPs increases Zn by 1.8-2.2-fold and Fe by 19.22-22.58% over the combined application of Zn SO4 and FeSO4, respectively. While the application of NPs significantly decreased seed phytic acid concentrations by 7.3-59.9% compared to the control. These findings suggest that the combined application of ZnO and Fe2O3 NPs effectively enhances soybean productivity, seed nutrient density, and overall produce quality. Therefore, the combined application of ZnO and Fe2O3 -NPs in soybean can be a potential approach for sustainable soybean production and to reduce/arrest Zn and Fe malnutrition in a growing population.


Assuntos
Compostos Férricos , Desnutrição , Nanopartículas , Óxido de Zinco , Glycine max , Fertilizantes , Peróxido de Hidrogênio , Zinco , Antioxidantes
2.
Food Chem ; 460(Pt 1): 140561, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059329

RESUMO

Pigeon pea, a protein-rich legume with low protein digestibility (PD) due to its high polyphenol content and other antinutritional factors (ANFs). Consequently, processing methods are crucial to improve PD. We investigated the effects of thermal treatments (cooking, hydrothermal, autoclaving, infrared rays) treatments and germination on modulation of PD, its properties and association with ANFs in two distinct genotypes based on polyphenol content: high (Pusa Arhar 2018-4) and low (ICP-1452). Treatments improved in vitro PD and essential amino acid content, with autoclaving showing significantly higher PD (ICP-1452: 90.4%, Pusa-Arhar 2018-4: 84.32%) ascribed to disruption of tight protein matrices. Significant increase in ß-turn, reduction in protein: starch, protein: polyphenol interactions as well as breakdown of storage proteins revealed by the analysis of protein structural properties. This study suggests thermal treatments, particularly autoclaving, can enhance pigeon pea protein's nutritional quality for its utilization as a new ingredient in development of healthy foods.


Assuntos
Cajanus , Digestão , Germinação , Temperatura Alta , Proteínas de Plantas , Polifenóis , Polifenóis/química , Polifenóis/metabolismo , Cajanus/química , Cajanus/metabolismo , Cajanus/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Valor Nutritivo , Grão Comestível/química , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento
3.
Front Nutr ; 10: 1205926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671196

RESUMO

Micronutrient malnutrition and suboptimal yields pose significant challenges in rainfed cropping systems worldwide. To address these issues, the implementation of climate-smart management strategies such as conservation agriculture (CA) and system intensification of millet cropping systems is crucial. In this study, we investigated the effects of different system intensification options, residue management, and contrasting tillage practices on pearl millet yield stability, biofortification, and the fatty acid profile of the pearl millet. ZT systems with intercropping of legumes (cluster bean, cowpea, and chickpea) significantly increased productivity (7-12.5%), micronutrient biofortification [Fe (12.5%), Zn (4.9-12.2%), Mn (3.1-6.7%), and Cu (8.3-16.7%)], protein content (2.2-9.9%), oil content (1.3%), and fatty acid profile of pearl millet grains compared to conventional tillage (CT)-based systems with sole cropping. The interactive effect of tillage, residue retention, and system intensification analyzed using GGE statistical analysis revealed that the best combination for achieving stable yields and micronutrient fortification was residue retention in both (wet and dry) seasons coupled with a ZT pearl millet + cowpea-mustard (both with and without barley intercropping) system. In conclusion, ZT combined with residue recycling and legume intercropping can be recommended as an effective approach to achieve stable yield levels and enhance the biofortification of pearl millet in rainfed agroecosystems of South Asia.

4.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406922

RESUMO

Yield limitation and widespread sulphur (S) deficiency in pearl-millet-nurturing dryland soils has emerged as a serious threat to crop productivity and quality. Among diverse pathways to tackle moisture and nutrient stress in rainfed ecologies, conservation agriculture (CA) and foliar nutrition have the greatest potential due to their economic and environmentally friendly nature. Therefore, to understand ammonium thiosulphate (ATS)-mediated foliar S nutrition effects on yield, protein content, mineral biofortification, and sulphur economy of rainfed pearl millet under diverse crop establishment systems, a field study was undertaken. The results highlighted that pearl millet grain and protein yield was significantly higher under no-tillage +3 t/ha crop residue mulching (NTCRM) as compared to no-tillage without mulch (NoTill) and conventional tillage (ConvTill), whereas the stover yield under NTCRM and ConvTill remained at par. Likewise, grain and stover yield in foliar S application using ATS 10 mL/L_twice was 19.5% and 13.2% greater over no S application. The sulphur management strategy of foliar-applied ATS 10 mL/L_twice resulted in significant improvement in grain protein content, protein yield, micronutrient fortification, and net returns (₹ 54.6 × 1000) over the control. Overall, ATS-mediated foliar S nutrition can be an alternate pathway to S management in pearl millet for yield enhancement, micronutrient biofortification and grain protein content increase under ConvTill, as well as under the new NTCRM systems.

5.
Sci Rep ; 12(1): 5146, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338233

RESUMO

Micronutrient malnutrition or hidden hunger remains a major global challenge for human health and wellness. The problem results from soil micro- and macro-nutrient deficiencies combined with imbalanced fertilizer use. Micronutrient-embedded NPK (MNENPK) complex fertilizers have been developed to overcome the macro- and micro-element deficiencies to enhance the yield and nutritive value of key crop products. We investigated the effect of foliar applications of an MNENPK fertilizer containing N, P, K, Fe, Zn and B in combination with traditional basal NPK fertilizers in terms of eggplant yield, fruit nutritive quality and on soil biological properties. Applying a multi-element foliar fertilizer improved the nutritional quality of eggplant fruit, with a significant increases in the concentration of Fe (+ 26%), Zn (+ 34%), K (+ 6%), Cu (+ 24%), and Mn (+ 27%), all of which are essential for human health. Increasing supply of essential micronutrients during the plant reproductive stages increased fruit yield, as a result of improved yield parameters. The positive effect of foliar fertilizing with MNENPK on soil biological parameters (soil microbial biomass carbon, dehydrogenase, alkaline phosphatase) also demonstrated its capacity to enhance soil fertility. This study suggests that foliar fertilizing with a multi-nutrient product such as MNENPK at eggplant flowering and fruiting stages, combined with the recommended-doses of NPK fertilizers is the optimal strategy to improve the nutritional quality of eggplant fruits and increase crop yields, both of which will contribute to reduce micronutrient malnutrition and hunger globally.


Assuntos
Desnutrição , Solanum melongena , Oligoelementos , Biofortificação , Suplementos Nutricionais , Fertilizantes/análise , Humanos , Micronutrientes/análise , Nutrientes , Solo
6.
Heliyon ; 5(8): e02317, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463405

RESUMO

Global food security is challenged by increasing levels of CO2, O3 and temperature trough their impacts on production and grain quality of wheat, one of the major C3 crops and staple food across the world. The present study was conducted to assess the effects of elevated levels of CO2 (EC; 550 ppm) and tropospheric O3 (EO; 70 ppb) as well as of combined interactive treatment [EC X EO; ECO] on plant growth, yield and grain quality of two wheat cultivars (HD-2967 and C-306) grown during 2016-17 and 2017-18 using free air ozone and carbon dioxide enrichment (FAOCE) facility under field conditions. Individually, EC, increased leaf area index (LAI; 15.9-28.2%), photosynthetic rate (Pn; 11.4-20.3%) and yield (8.2-20.9%) whereas EO declined LAI (5.1-12.5%), Pn (2.8-11.8%) and yield (2.2-14.2%) over ambient conditions (Amb: 405.2 ppm CO2 and 30.7 ppb O3). Under ECO condition, EC increased LAI (2.2-17.1%), Pn (2.8-17.6%) and grain yield parameters (4.4-24.3%) across the cultivars in both years, but reduced the positive effects of EO on quality as compared to Amb. Dilution effect of increased yield under EC condition have reduced total protein, micro- and macro-nutrient concentrations whereas EO increased them notably compared to Amb. Starch in grains increased under EC but reduced under EO as compared to Amb. AOT40, the sum of averaged difference of O3 h-1 concentration beyond 40 ppb for 7 hours (31233 ppb h-1) in FAOCEs rings during the crop growth period led to reduction in average grain yield of HD-2967 and C-306 by 11.6 and 8.5% or by 1.6 and 1.3% yield loss per ppb increase of O3, respectively. The growth, yield and quality parameters of both wheat cultivars responded similarly but to different extent to all treatments. EC was able to offset the negative effects of EO on yield and yield components only, but not those concerning the quality of grains. To stabilize global food security, precursor gases forming tropospheric ozone must be constrained.

7.
Indian J Exp Biol ; 2019 Feb; 57(2): 123-130
Artigo | IMSEAR | ID: sea-191432

RESUMO

Feeding the increasing global population with adequate supply of cereals for food, particularly with limited agricultural area, is a challenging task. In this context, emphasis on enhancing food producing processes gains attention. Gamma irradiation, up to certain doses, is known to improve crop yield without using chemical fertilizers. Among the cereals, maize is an important crop, which accounts for 9% of total food grain production. Here, we presumed that gamma ray pretreatment to maize seeds would be beneficial and boost the maize productivity and yield. In this study, we conducted field experiments to assess the gamma irradiation induced effect on seedling emergence, plant growth, yield and yield attributes of maize (HQPM-1). Grains of maize were exposed to gamma radiation doses ranging from 0.0025, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 0.50, 1.0 and 2.0 kGy with the help of 60Co γ-radiation source facility available in the Centre. The germination of irradiated seeds was assessed in an incubator chamber and the irradiated seeds were sown in the field during kharif (July-October) 2013 and 2014 seasons at the IARI, New Delhi, research farm. The germination was >90% up to 0.1 kGy dose, beyond which, germination of seeds in the incubator as well as in field condition declined significantly. Few seedlings still came out from relatively higher doses of gamma irradiation (>0.5 kGy). However, these seedlings could not survive more than seven days. Results of present study indicated that plant growth parameters, such as plant height, photosynthetic rate, chlorophyll content, leaf area index at ‘tasseling’ as well as at ‘silking’ stage affected positively at lower doses (<0.2 kGy). The biological yield, grain weight (g) (cob-1), grains (cob-1) and 100 grain weights responded positively to the lower doses (≈ 0.1 kGy) of gamma irradiation. Our results indicated improvement in biological yield by 35.2% at 0.1 kGy as compared to the control (00 kGy). However, maximum reduction (33%) was recorded at 0.5 kGy. Similarly, grain yield (ton ha-1) was improved by 8.3% at 0.1 kGy as compared to the control, but reduced the most by 56.9% at 0.5 kGy compared to the respective control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA