Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 27(1): 215-226, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33509316

RESUMO

This paper presents an investigation on micropipe evolution from hexagonal voids in physical vapor transport-grown 4H-SiC single crystals using the cathodoluminescence (CL) imaging technique. Complementary techniques optical microscopy, scanning electron microscopy, and energy-dispersive spectroscopy (EDS) are also used to understand the formation mechanism of hexagonal voids along with the origin of pipes from these voids. The ability of CL to image variations along the depth of the sample provides new insights on how micropipes are attached to hexagonal voids that lie deep within the bulk single crystals. CL imaging confirms that multiple micropipes can originate from a single hexagonal void. EDS mapping shows that the inside of the micropipe walls exhibits higher levels of carbon. Investigation of the seed region by optical imaging shows that improper fixing of the seed to the crucible lid is the root cause for the formation of hexagonal voids that subsequently lead to micropipe formation.

2.
J Nanosci Nanotechnol ; 18(1): 614-622, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768887

RESUMO

In this paper, we have reported a simple and efficient method for the synthesis of uniform, highly conducting single or few layer molybdenum disulfide (MoS2) on large scale. Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM) have been used for the confirmation of mono or few layered nature of the as-synthesized MoS2 sheets. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD) and Raman Spectroscopy have also been used to study the elemental, phase, and molecular composition of the sample. Optical properties of as-synthesized sample have been probed by measuring absorption and photoluminescence spectra which also compliment the formation of mono and few layers MoS2 Current-voltage (I-V ) characteristics of as-synthesized sample in the pellet form reveal that MoS2 sheets have an ohmic character and found to be highly conducting. Besides characterizing the as-synthesized sample, we have also proposed the mechanism and factors which play a decisive role in formation of high quality MoS2 sheets.

3.
Phys Chem Chem Phys ; 18(16): 11157-67, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27049142

RESUMO

CeO2 nanoparticles (NPs) with average particle size of ∼17 nm were grown on graphene sheets by simply mixing cerium chloride as the Ce precursor with graphene oxide (GO) in distilled water and the simultaneous reduction of GO to reduced graphene oxide (rGO), followed by a one-step hydrothermal treatment at 150 °C. A unique blue to green tuneable luminescence was observed as a function of the excitation wavelength. With this method, significant applications of rGO-CeO2 nanocomposites in many optical devices could be realized. The photocatalytic activity of the as-synthesized CeO2 and rGO-CeO2 nanocomposite was investigated by monitoring the degradation of methylene blue (MB) dye under direct sunlight irradiation. The rGO-CeO2 nanocomposite exhibited excellent photocatalytic activity compared to CeO2 NPs by degrading 90% of the MB dye in 10 min irradiation under sunlight. This property of rGO-CeO2 nanocomposites was ascribed to the significant suppression of the recombination rate of photo-generated electron-hole pairs due to charge transfer between rGO sheets and CeO2 NPs and the smaller optical band-gap in the rGO-CeO2 nanocomposite.

4.
Phys Chem Chem Phys ; 18(18): 13126-7, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27089926

RESUMO

Correction for 'One step in situ synthesis of CeO2 nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation' by Animesh Kumar Ojha et al., Phys. Chem. Chem. Phys., 2015, DOI: .

5.
ACS Appl Mater Interfaces ; 14(32): 37182-37191, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921689

RESUMO

Spin pumping has been considered a powerful tool to manipulate the spin current in a ferromagnetic/nonmagnetic (FM/NM) system, where the NM part exhibits large spin-orbit coupling (SOC). In this work, the spin pumping in ß-W/Interlayer (IL)/Co2FeAl (CFA) heterostructures grown on Si(100) is systematically investigated with different ILs in which SOC strength ranges from weak to strong. We first measure the spin pumping through the enhancement of effective damping in CFA by varying the thickness of ß-W. The damping enhancement in the bilayer of ß-W/CFA (without IL) is found to be ∼50% larger than the Gilbert damping in a single CFA layer with a spin diffusion length and spin mixing conductance of 2.12 ± 0.27 nm and 13.17 ± 0.34 nm-2, respectively. Further, the ILs of different SOC strengths such as Al, Mg, Mo, and Ta were inserted at the ß-W/CFA interface to probe their impact on damping in ß-W/ILs/CFA. The effective damping reduced to 8% and 20% for Al and Mg, respectively, whereas it increased to 66% and 75% with ILs of Mo and Ta, respectively, compared to the ß-W/CFA heterostructure. Thus, in the presence of ILs with weak SOC, the spin pumping at the ß-W/CFA interface is suppressed, while for the high SOC ILs effective damping increased significantly from its original value of ß-W/CFA bilayer using a thin IL. This is further confirmed by performing inverse spin Hall effect measurements. In summary, the transfer of spin angular momentum can be significantly enhanced by choosing a proper ultrathin interface layer. Our study provides a tool to increase the spin current production by inserting an appropriate thin interlayer which is useful in modifying the heterostructure for efficient performance in spintronics devices.

6.
Sci Rep ; 9(1): 1085, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705297

RESUMO

Magnetic skyrmions are topological spin-textures having immense potential for energy efficient spintronic devices. Here, we report the observation of stable skyrmions in unpatterned Ta/Co2FeAl(CFA)/MgO thin film heterostructures at room temperature in remnant state employing magnetic force microscopy. It is shown that these skyrmions consisting of ultrathin ferromagnetic CFA Heusler alloy result from strong interfacial Dzyaloshinskii-Moriya interaction (i-DMI) as evidenced by Brillouin light scattering measurements, in agreement with the results of micromagnetic simulations. We also emphasize on room temperature observation of multiple skyrmions which can be stabilized for suitable combinations of CFA layer thickness, perpendicular magnetic anisotropy, and i-DMI. These results provide a significant step towards designing of room temperature spintronic devices based on skyrmions in full Heusler alloy based thin films.

7.
Nanoscale ; 8(7): 4299-310, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26839090

RESUMO

The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to tensile stress as well as to compression, present in the radial direction and along the nanotube axis, respectively. Finally, the growth of permanent cylindrical nanomagnets has been optimized by applying a field gradient. Besides presenting the growth model of in situ filling, we have also proposed the mechanism of magnetization of the nanotubes. Magnetization along the tube axis has been probed by confirming the pole formation. Fe3C has been selected because of its ease of formation, low TC and incompressibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA