Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7868): 511-515, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290430

RESUMO

Although Venus is a terrestrial planet similar to Earth, its atmospheric circulation is much different and poorly characterized1. Winds at the cloud top have been measured predominantly on the dayside. Prominent poleward drifts have been observed with dayside cloud tracking and interpreted to be caused by thermal tides and a Hadley circulation2-4; however, the lack of nightside measurements over broad latitudes has prevented the unambiguous characterization of these components. Here we obtain cloud-tracked winds at all local times using thermal infrared images taken by the Venus orbiter Akatsuki, which is sensitive to an altitude of about 65 kilometres5. Prominent equatorward flows are found on the nightside, resulting in null meridional velocities when these are zonally averaged. The velocity structure of the thermal tides was determined without the influence of the Hadley circulation. The semidiurnal tide was found to have an amplitude large enough to contribute to the maintenance of the atmospheric superrotation. The weakness of the mean meridional flow at the cloud top implies that the poleward branch of the Hadley circulation exists above the cloud top and that the equatorward branch exists in the clouds. Our results should shed light on atmospheric superrotation in other celestial bodies.

2.
J Phys Chem Lett ; 15(36): 9175-9182, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39213498

RESUMO

Near-infrared (NIR)-absorbing dyes are valuable for various applications, such as bioimaging and electronic devices. This work introduces a novel approach for designing NIR dyes, oxidation of weakly coupled diradicals. Our approach features a weak exchange interaction in diradicals, which potentially leads to bonding/antibonding molecular orbitals with a small energy gap. We found that removing one of two singly occupied molecular orbital electrons of the diradicals results in an exceptionally narrow frontier orbital energy gap. We examined a series of Blatter radical dimers, and the most weakly coupled diradical prepared in this work (ΔEST ∼ 0.12 eV) with a molecular weight of 590 Da exhibited a strong NIR absorption band reaching 2200 nm upon one-electron oxidation. The optical band gaps of the radical cations strongly correlate to the exchange interaction in the precursor neutral species, offering prediction and fine-tuning of the optical band gap in the NIR region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA