Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 90, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204127

RESUMO

Aspergillus oryzae PrtR is an ortholog of the transcription factor PrtT, which positively regulates the transcription of extracellular peptidase genes in Aspergillus niger and Aspergillus fumigatus. To identify the genes under the control of PrtR and elucidate its regulatory mechanism in A. oryzae, prtR gene disruption mutants were generated. The control strain clearly showed a halo on media containing skim milk as the nitrogen source, whereas the ΔprtR strain formed a smaller halo. Measurement of acid peptidase activity revealed that approximately 84% of acidic endopeptidase and 86% of carboxypeptidase activities are positively regulated by PrtR. As the transcription of the prtR gene varied depending on culture conditions, especially with or without a protein substrate, it was considered that its transcription would be regulated in response to a nitrogen source. In addition, contrary to previous expectations, PrtR was found to act both in promoting and repressing the transcription of extracellular peptidase genes. The mode of regulation varied from gene to gene. Some genes were regulated in the same manner in both liquid and solid cultures, whereas others were regulated in different ways depending on the culture conditions. Furthermore, PrtR has been suggested to regulate the transcription of peptidase genes that are closely associated with other transcription factors. KEY POINTS: • Almost all peptidase genes in Aspergillus oryzae are positively regulated by PrtR • However, several genes are regulated negatively by PrtR • PrtR optimizes transcription of peptidase genes in response to culture conditions.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus fumigatus , Aspergillus niger , Endopeptidases , Nitrogênio , Fatores de Transcrição/genética
2.
Biosci Biotechnol Biochem ; 86(3): 413-422, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35025981

RESUMO

Aspergillus oryzae RIB40 has 11 aspartic endopeptidase genes. We searched for milk-clotting enzymes based on the homology of the deduced amino acid sequence with chymosins. As a result, we identified a milk-clotting enzyme in A. oryzae. We expected other Aspergillus species to have a homologous enzyme with milk-clotting activity, and we found the most homologous aspartic endopeptidase from A. luchuensis had milk-clotting activity. Surprisingly, 2 enzymes were considered as vacuole enzymes according to a study on A. niger proteases. The 2 enzymes from A. oryzae and A. luchuensis cleaved a peptide between the 105Phe-106Met bond in κ-casein, similar to chymosin. Although both enzymes showed proteolytic activity using casein as a substrate, the optimum pH values for milk-clotting and proteolytic activities were different. Furthermore, the substrate specificities were highly restricted. Therefore, we expected that the Japanese traditional fermentation agent, koji, could be used as an enzyme source for cheese production.


Assuntos
Aspergillus oryzae
3.
Appl Microbiol Biotechnol ; 105(21-22): 8481-8494, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34668983

RESUMO

The oryzapsin genes opsA and opsB in Aspergillus oryzae encoding glycosylphosphatidylinositol (GPI)-anchored aspartic endopeptidase are homologs of Saccharomyces cerevisiae yapsins. We recently found another homolog, opsC, in the A. oryzae genome database, which was suggested to be a pseudogene. However, the profiles and roles of the proteins encoded by these genes have not yet been clarified. Toward this end, we first produced opsA- and opsB-overexpression strains and performed enzymatic analyses, revealing that OpsA and OpsB can attack sites other than the carboxyl-terminal peptide bonds of basic amino acids. Moreover, OpsA and OpsB were confirmed to bind to the cell membrane with a GPI anchor. Second, opsA and opsB single-deletion and double-deletion strains (ΔopsA, ΔopsB, and ΔopsAΔopsB) were constructed to explore the expected roles of oryzapsins in cell wall synthesis, similar to the role of yapsins. The transcription level of mpkA in the cell wall integrity pathway was increased in ΔopsB and ΔopsAΔopsB strains, suggesting that OpsB might be involved in processing cell wall synthesis-related proteins. Treatment with an ergosterol biosynthesis inhibitor reduced the growth of the ΔopsAΔopsB strain. Moreover, the mRNA levels of Aoerg1, Aoerg3-1, Aoerg3-2, Aoerg7b, Aoerg11, and Aohmg1,2 showed a decreasing tendency in the ΔopsAΔopsB strain, and the ergosterol content in the membrane was reduced in the ΔopsAΔopsB strain. These results suggest that oryzapsins exist in the cell membrane and play roles in the formation of cell membranes. This is the first report of the involvement of GPI-anchored aspartic endopeptidases in ergosterol biosynthesis.Key points• The oryzapsins have wider substrate specificity than yaspins in S. cerevisiae.• Unlike the yapsins, the oryzapsins might not be involved in the main structure synthesis of the cell wall.• The oryzapsins would be involved in ergosterol biosynthesis.


Assuntos
Aspergillus oryzae , Proteínas de Saccharomyces cerevisiae , Aspergillus oryzae/genética , Ergosterol , Glicosilfosfatidilinositóis , Saccharomyces cerevisiae/genética
4.
Appl Microbiol Biotechnol ; 101(6): 2343-2356, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27917435

RESUMO

Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.


Assuntos
Aspergillus nidulans/genética , Aspergillus oryzae/genética , Hidrolases de Éster Carboxílico/química , Esterases/química , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Sequência de Aminoácidos , Aspergillus nidulans/metabolismo , Aspergillus oryzae/metabolismo , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Sequência Conservada , Esterases/genética , Esterases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Filogenia , Polímeros/química , Polímeros/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática
5.
Biosci Biotechnol Biochem ; 81(5): 1041-1050, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28058997

RESUMO

Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ∆admA∆admB and ∆admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ∆admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ∆admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/genética , Aspergillus oryzae/citologia , Aspergillus oryzae/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genômica , Cinética , Fosforilação , Polissacarídeos/metabolismo , Transcrição Gênica
6.
Mol Microbiol ; 96(1): 14-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588312

RESUMO

Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co-adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA-degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA-CutL1 interaction by using site-directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N-terminus of RolA, play crucial roles in the RolA-CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (K(D) = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA-H32S/K34S and the triple variant CutL1-E31S/D142S/D171S (K(D) = 78.0 nM). We discuss a molecular prototype model of hydrophobin-based enzyme recruitment at the solid-water interface.


Assuntos
Aminoácidos Acídicos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interações Hidrofóbicas e Hidrofílicas , Íons , Modelos Moleculares , Mutagênese Sítio-Dirigida , Poliésteres/metabolismo , Polímeros/metabolismo , Técnicas de Microbalança de Cristal de Quartzo
7.
Appl Microbiol Biotechnol ; 100(11): 4947-58, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846741

RESUMO

Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , DNA Fúngico/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
Biosci Biotechnol Biochem ; 80(2): 386-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26539735

RESUMO

Analysis of expressed sequence tag libraries from various culture conditions revealed the existence of conidia-specific transcripts assembled to putative conidiation-specific reductase gene (csrA) in Aspergillus oryzae. However, the all transcripts were transcribed with opposite direction to the gene csrA. The sequence analysis of the transcript revealed that the RNA overlapped mRNA of csrA with 3'-end, and did not code protein longer than 60 amino acid residues. We designated the transcript Conidia Specific Long Natural-antisense RNA (CSLNR). The real-time PCR analysis demonstrated that the CSLNR is conidia-specific transcript, which cannot be transcribed in the absence of brlA, and the amount of CSLNR was much more than that of the transcript from csrA in conidia. Furthermore, the csrA deletion, also lacking coding region of CSLNR in A. oryzae reduced the number of conidia. Overexpression of CsrA demonstrated the inhibition of growth and conidiation, while CSLNR did not affect conidiation.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , RNA Antissenso/genética , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Aspergillus oryzae/metabolismo , Sequência de Bases , Éxons , Etiquetas de Sequências Expressas , Proteínas Fúngicas/metabolismo , Deleção de Genes , Íntrons , Dados de Sequência Molecular , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esporos Fúngicos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Biosci Biotechnol Biochem ; 80(9): 1781-91, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26980104

RESUMO

Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes ß-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the ß-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of ß-1,3-glucan polymerization.


Assuntos
Aspergillus oryzae/enzimologia , Proteínas Fúngicas/genética , Glucanos/biossíntese , Peptídeo Hidrolases/genética , Serina Endopeptidases/genética , Aspergillus oryzae/genética , Parede Celular/química , Parede Celular/metabolismo , Quitina/química , Glucanos/química , Glucose/metabolismo , Subtilisina/metabolismo , beta-Glucanas/química , beta-Glucanas/metabolismo
10.
Biosci Biotechnol Biochem ; 80(9): 1813-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27050120

RESUMO

Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Metaloendopeptidases/genética , Aspergillus oryzae/enzimologia , Estabilidade Enzimática/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Nitratos/química , Especificidade por Substrato , Temperatura
11.
Appl Microbiol Biotechnol ; 99(24): 10489-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307443

RESUMO

Islet transplantation is a prospective treatment for restoring normoglycemia in patients with type 1 diabetes. Islet isolation from pancreases by decomposition with proteolytic enzymes is necessary for transplantation. Two collagenases, collagenase class I (ColG) and collagenase class II (ColH), from Clostridium histolyticum have been used for islet isolation. Neutral proteases have been added to the collagenases for human islet isolation. A neutral protease from C. histolyticum (NP) and thermolysin from Bacillus thermoproteolyicus has been used for the purpose. Thermolysin is an extensively studied enzyme, but NP is not well known. We therefore cloned the gene encoding NP and constructed a Bacillus subtilis overexpression strain. The expressed enzyme was purified, and its substrate specificity was examined. We observed that the substrate specificity of NP was higher than that of thermolysin, and that the protein digestion activities of NP, as determined by colorimetric methods, were lower than those of thermolysin. It seems that decomposition using NP does not negatively affect islets during islet preparation from pancreases. Furthermore, we designed a novel substrate that allows the measurement of NP activity specifically in the enzyme mixture for islet preparation and the culture broth of C. histolyticum. The activity of NP can also be monitored during islet isolation. We hope the purified enzyme and this specific substrate contribute to the optimization of islet isolation from pancreases and that it leads to the success of islet transplantation and the improvement of the quality of life (QOL) for diabetic patients.


Assuntos
Clostridium histolyticum/enzimologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Clonagem Molecular , Clostridium histolyticum/genética , Expressão Gênica , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
12.
Biosci Biotechnol Biochem ; 78(8): 1328-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25130734

RESUMO

Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.


Assuntos
Processamento Alternativo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Carboxipeptidases/genética , Regulação Fúngica da Expressão Gênica/genética , Íntrons/genética , Aspergillus oryzae/metabolismo , Sequência de Bases , Nitrogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Biophys J ; 104(7): 1538-45, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23561530

RESUMO

Collagenase H (ColH) from Clostridium histolyticum is a multimodular protein composed of a collagenase module (activator and peptidase domains), two polycystic kidney disease-like domains, and a collagen-binding domain. The interdomain conformation and its changes are very important for understanding the functions of ColH. In this study, small angle x-ray scattering and limited proteolysis were employed to reveal the interdomain arrangement of ColH in solution. The ab initio beads model indicated that ColH adopted a tapered shape with a swollen head. Under calcium-chelated conditions (with EGTA), the overall structure was further elongated. The rigid body model indicated that the closed form of the collagenase module was preferred in solution. The limited proteolysis demonstrated that the protease sensitivity of ColH was significantly increased under the calcium-chelated conditions, and that the digestion mainly occurred in the domain linker regions. Fluorescence measurements with a fluorescent dye were performed with the limited proteolysis products after separation. The results indicated that the limited proteolysis products exhibited fluorescence similar to that of the full-length ColH. These findings suggested that the conformation of full-length ColH in solution is the elongated form, and this form is calcium-dependently maintained at the domain linker regions.


Assuntos
Cálcio/metabolismo , Colagenases/química , Colagenases/metabolismo , Clostridium histolyticum/enzimologia , Modelos Moleculares , Conformação Proteica , Proteólise , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
14.
Commun Biol ; 6(1): 1009, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794162

RESUMO

Regulated Ire1-dependent decay (RIDD) is a feedback mechanism in which the endoribonuclease Ire1 cleaves endoplasmic reticulum (ER)-localized mRNAs encoding secretory and membrane proteins in eukaryotic cells under ER stress. RIDD is artificially induced by chemicals that generate ER stress; however, its importance under physiological conditions remains unclear. Here, we demonstrate the occurrence of RIDD in filamentous fungus using Aspergillus oryzae as a model, which secretes copious amounts of amylases. α-Amylase mRNA was rapidly degraded by IreA, an Ire1 ortholog, depending on its ER-associated translation when mycelia were treated with dithiothreitol, an ER-stress inducer. The mRNA encoding maltose permease MalP, a prerequisite for the induction of amylolytic genes, was also identified as an RIDD target. Importantly, RIDD of malP mRNA is triggered by inducing amylase production without any artificial ER stress inducer. Our data provide the evidence that RIDD occurs in eukaryotic microorganisms under physiological ER stress.


Assuntos
Amilases , Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo
15.
Appl Environ Microbiol ; 78(16): 5839-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685155

RESUMO

The clostridial collagenases G and H are multidomain proteins. For collagen digestion, the domain arrangement is likely to play an important role in collagen binding and hydrolysis. In this study, the full-length collagenase H protein from Clostridium histolyticum was expressed in Escherichia coli and purified. The N-terminal amino acid of the purified protein was Ala31. The expressed protein showed enzymatic activity against azocoll as a substrate. To investigate the role of Ca(2+) in providing structural stability to the full-length collagenase H, biophysical measurements were conducted using the recombinant protein. Size exclusion chromatography revealed that the Ca(2+) chelation by EGTA induced interdomain conformational changes. Dynamic light scattering measurements showed an increase in the percent polydispersity as the Ca(2+) was chelated, suggesting an increase in protein flexibility. In addition to these conformational changes, differential scanning fluorimetry measurements revealed that the thermostability was decreased by Ca(2+) chelation, in comparison with the thermal melting point (T(m)). The melting point changed from 54 to 49°C by the Ca(2+) chelation, and it was restored to 54°C by the addition of excess Ca(2+). These results indicated that the interdomain flexibility and the domain arrangement of full-length collagenase H are reversibly regulated by Ca(2+).


Assuntos
Cálcio/metabolismo , Clostridium histolyticum/enzimologia , Íons/metabolismo , Colagenase Microbiana/química , Compostos Azo/metabolismo , Cromatografia em Gel , Clonagem Molecular , Colágeno/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Fluorometria , Expressão Gênica , Colagenase Microbiana/genética , Colagenase Microbiana/metabolismo , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Temperatura de Transição
16.
Appl Environ Microbiol ; 78(22): 8154-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961905

RESUMO

Aspergillus oryzae has an ortholog of Saccharomyces cerevisiae KEX1, termed kexA. A truncated form of KexA protein showed serine-type carboxypeptidase activity and somewhat broader substrate specificity than Kex1 protease. Furthermore, our results indicated that KexA is required for normal growth of A. oryzae and that it might be involved in hyphal branching.


Assuntos
Aspergillus oryzae/enzimologia , Carboxipeptidases/metabolismo , Hifas/enzimologia , Fatores de Virulência/metabolismo , Aspergillus oryzae/crescimento & desenvolvimento , Carboxipeptidases/química , Hifas/crescimento & desenvolvimento , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Fatores de Virulência/química
17.
Appl Microbiol Biotechnol ; 93(2): 655-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22005737

RESUMO

The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.


Assuntos
Alanina/metabolismo , Aminopeptidases/metabolismo , Aspergillus oryzae/enzimologia , Glicina/metabolismo , Oryza/metabolismo , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Aspergillus oryzae/genética , Meios de Cultura/química , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ochrobactrum anthropi/enzimologia , Ochrobactrum anthropi/genética , Homologia de Sequência de Aminoácidos , Temperatura
18.
World J Microbiol Biotechnol ; 28(8): 2643-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22806190

RESUMO

The apsA and apsB genes encoding family M1 aminopeptidases were identified in the industrial fungus Aspergillus oryzae. The apsB was transcriptionally up-regulated up to 2.5-fold in response to the deprivation of nitrogen or carbon sources in growth media, while up-regulation of apsA was less significant. The encoded proteins were bacterially expressed and purified to characterize their enzymatic properties. ApsA and ApsB were optimally active at pH 7.0 and 35 °C and stable at pH ranges of 6-10 and 4-10, respectively, up to 40 °C. The enzymes were inhibited by bestatin and EDTA, as has been reported for family M1 aminopeptidases that characteristically contain a zinc-binding catalytic motif. Both enzymes preferentially liberated N-terminal lysine, which is an essential amino acid and an important additive to animal feed. Enzymes that efficiently release N-terminal lysine from peptides could be useful for food and forage industries. Examination of the reactivity toward peptide substrate of varying length revealed that ApsB exhibited broader substrate specificity than ApsA although the reactivity of ApsB decreased as the length of peptide substrate decreased.


Assuntos
Aminopeptidases/genética , Aminopeptidases/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aminopeptidases/química , Proteínas Fúngicas/química , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
Biosci Biotechnol Biochem ; 75(4): 662-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21512241

RESUMO

Gene AO090103000153 is unique to Aspergillus oryzae RIB40 and A. flavus NRRL3357, and is speculated to encode a serine-type carboxypeptidase. In this study, we purified and characterized a heterologously expressed gene product of AO090103000153. 5'-Rapid amplification of cDNA ends indicated that the translation start site of the gene is located 1,586 bp downstream of the translation start site predicted by the genome sequencing project. The gene, starting from the revised translation start codon, termed ocpC, was transcribed constantly in A. oryzae RIB40. Purified recombinant OcpC exhibited the enzymatic properties of a serine-type carboxypeptidase. This protease was stable at temperatures below 45°C and a low pH, and had broad substrate specificity for N-acylpeptides, but it exhibited significantly lower specific activity and a lower k(cat) value for substrates than previously reported serine-type carboxypeptidases from A. oryzae.


Assuntos
Aspergillus oryzae/enzimologia , Carboxipeptidases/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus oryzae/genética , Carboxipeptidases/química , Carboxipeptidases/genética , Carboxipeptidases/isolamento & purificação , Vetores Genéticos/genética , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA