Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7999): 670-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297122

RESUMO

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Biocatálise/efeitos da radiação , Cálcio/metabolismo , Cristalografia , Transporte de Elétrons/efeitos da radiação , Elétrons , Manganês/metabolismo , Oxirredução/efeitos da radiação , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Prótons , Fatores de Tempo , Tirosina/metabolismo , Água/química , Água/metabolismo
2.
Photosynth Res ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945776

RESUMO

This paper reviews our historical developments of broken-symmetry (BS) and beyond BS methods that are applicable for theoretical investigations of metalloenzymes such as OEC in PSII. The BS hybrid DFT (HDFT) calculations starting from high-resolution (HR) XRD structure in the most stable S1 state have been performed to elucidate structure and bonding of whole possible intermediates of the CaMn4Ox cluster (1) in the Si (i = 0 ~ 4) states of the Kok cycle. The large-scale HDFT/MM computations starting from HR XRD have been performed to elucidate biomolecular system structures which are crucial for examination of possible water inlet and proton release pathways for water oxidation in OEC of PSII. DLPNO CCSD(T0) computations have been performed for elucidation of scope and reliability of relative energies among the intermediates by HDFT. These computations combined with EXAFS, XRD, XFEL, and EPR experimental results have elucidated the structure, bonding, and reactivity of the key intermediates, which are indispensable for understanding and explanation of the mechanism of water oxidation in OEC of PSII. Interplay between theory and experiments have elucidated important roles of four degrees of freedom, spin, charge, orbital, and nuclear motion for understanding and explanation of the chemical reactivity of 1 embedded in protein matrix, indicating the participations of the Ca(H2O)n ion and tyrosine(Yz)-O radical as a one-electron acceptor for the O-O bond formation. The Ca-assisted Yz-coupled O-O bond formation mechanisms for water oxidation are consistent with recent XES and very recent time-resolved SFX XFEL and FTIR results.

3.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894598

RESUMO

This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC).

4.
J Comput Chem ; 40(2): 333-341, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30341945

RESUMO

Both direct exchange and super-exchange interactions cooperate to realize inter-spin magnetic interaction in binuclear manganese complex Mn(IV)2 O2 (NHCHCO2 )4 with a di-µ-oxo path. We revisited this spin system using DMRG CAS methods and CAS selection procedures. Our results indicate that our previous "dynamically extended spin polarization" (DE-SP) procedure for organic polyradicals and so forth does not work well. Thus, we have examined another selection procedure, the "dynamically extended super-exchange" (DE-SE) procedure. DMRG CASCI [18,18] by UB3LYP(HS)-UNO(DE-SE) can realize antiferromagnetic J values similar to experimental ones (-87 cm-1 ). In addition, all J values between all spin states (HS[septet],IS[quintet],IS[triplet],LS[singlet])were also shown to be correct under sufficiently large M values. © 2018 Wiley Periodicals, Inc.

5.
Physiol Plant ; 166(1): 44-59, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30847925

RESUMO

The optimized geometries of the CaMn4 OX (X = 5, 6) cluster in the oxygen evolving complex (OEC) of photosystem II (PSII) by large-scale quantum mechanics (QM) and molecular mechanics (MM) calculations are compared with recent serial femtosecond crystallography (SFX) results for the Si (i = 0-3) states. The valence states of four Mn ions by the QM/MM calculations are also examined in relation to the experimental results by the X-ray emission spectroscopy (XES) for the Si intermediates. Geometrical and valence structures of right-opened Mn-hydroxide, Mn-oxo and Mn-peroxide intermediates in the S3 state are investigated in detail in relation to recent SFX and XES experiments for the S3 state. Interplay between theory and experiment indicates that the Mn-oxo intermediate is a new possible candidate for the S3 state. Implications of the computational results are discussed in relation to possible mechanisms of the oxygenoxygen bond formation for water oxidation in OEC of PSII.


Assuntos
Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cristalografia , Manganês , Oxirredução , Espectrometria por Raios X
6.
Molecules ; 24(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823580

RESUMO

We applied our analysis, based on a linear response function of density and spin density, to two typical transition metal complex systems-the reaction centers of P450, and oxygen evolving center in Photosystem II, both of which contain open-shell transition metal ions. We discuss the relationship between LRF of electron density and spin density and the types of units and interactions of the systems. The computational results are discussed in relation to quantum mechanics (QM) cluster and quantum mechanics/molecular mechanics (QM/MM) modeling that are employed to compute the reaction centers of enzymes.


Assuntos
Complexos de Coordenação/química , Oxigênio/química , Elementos de Transição/química , Catálise , Transporte de Elétrons , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Teoria Quântica , Água
7.
Faraday Discuss ; 198: 83-106, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28276543

RESUMO

Large-scale QM/MM calculations were performed to elucidate an optimized geometrical structure of a CaMn4O5 cluster with and without water insertion in the S3 state of the oxygen evolving complex (OEC) of photosystem II (PSII). The left (L)-opened structure was found to be stable under the assumption of no hydroxide anion insertion in the S3 state, whereas the right (R)-opened structure became more stable if one water molecule is inserted to the Mn4Ca cluster. The optimized Mna(4)-Mnd(1) distance determined by QM/MM was about 5.0 Å for the S3 structure without an inserted hydroxide anion, but this is elongated by 0.2-0.3 Å after insertion. These computational results are discussed in relation to the possible mechanisms of O-O bond formation in water oxidation by the OEC of PSII.

8.
Inorg Chem ; 55(2): 502-11, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26717045

RESUMO

We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.


Assuntos
Modelos Químicos , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Cristalografia por Raios X , Isomerismo , Oxirredução , Proteínas/química , Termodinâmica
9.
Phys Chem Chem Phys ; 18(16): 11330-40, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27055567

RESUMO

Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.


Assuntos
Compostos de Cálcio/química , Compostos de Manganês/química , Modelos Químicos , Óxidos/química , Oxigênio/química , Fotossíntese , Espectroscopia de Ressonância de Spin Eletrônica , Teoria Quântica
10.
Proc Natl Acad Sci U S A ; 109(39): 15600-5, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22761310

RESUMO

The nature of chemical bonds of ruthenium(Ru)-quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu(2)Q)(OH(2))](ClO(4))(2) (trpy = 2,2':6',2''-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru(2)(btpyan)(3,6-di-Bu(2)Q)(2)(OH(2))](2+) (btpyan = 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene, 3,6-t-Bu(2)Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)-Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems.


Assuntos
Modelos Químicos , Fotossíntese , Quinina/química , Rutênio/química , Água/química , Radicais Livres/química
11.
Inorg Chem ; 53(8): 3973-84, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24694023

RESUMO

We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged µ-peroxo or µ-superoxo intermediates. The µ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged µ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.


Assuntos
Benzoquinonas/química , Compostos Organometálicos/química , Rutênio/química , Água/química , Ligantes , Estrutura Molecular , Oxirredução , Teoria Quântica , Termodinâmica
12.
Molecules ; 19(9): 13358-73, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25178060

RESUMO

We examined nearsightedness of electronic matter (NEM) of finite systems on the basis of linear response function (LRF). From the computational results of a square-well model system, the behavior of responses obviously depends on the number of electrons (N): as N increases, LRF, δρ(r)/δv(r'), decays rapidly for the distance, |r-r'|. This exemplifies that the principle suggested by Kohn and Prodan holds even for finite systems: the cause of NEM is destructive interference among electron density amplitudes. In addition, we examined double-well model systems, which have low-lying degenerate levels. In this case, there are two types of LRF: the cases of the half-filled and of full-filled in low-lying degenerate levels. The response for the former is delocalized, while that of the later is localized. These behaviors of model systems are discussed in relation to the molecular systems' counterparts, H2, He22+, and He2 systems. We also see that NEM holds for the dissociated limit of H2, of which the mechanism is similar to that of the insulating state of solids as suggested by Kohn. We also examined LRF of alanine tripeptide system as well as butane and butadiene molecules, showing that NEM of the polypeptide system is caused by sp3 junctions at Cα atoms that prevent propagation of amplitudes of LRF, which is critically different from that of NEM for finite and infinite homogeneous systems.


Assuntos
Simulação por Computador , Algoritmos , Modelos Lineares , Modelos Moleculares , Oligopeptídeos/química , Estrutura Secundária de Proteína , Teoria Quântica
14.
J Phys Chem B ; 126(38): 7212-7228, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36107406

RESUMO

The primary coordination sphere of the multinuclear cofactor (Mn4CaOx) in the oxygen-evolving complex (OEC) of photosystem II is absolutely conserved to maintain its structure and function. Recent time-resolved serial femtosecond crystallography identified large reorganization of the primary coordination sphere in the S2 to S3 transition, which elicits a cascade of events involving Mn oxidation and water molecule binding to a putative catalytic Mn site. We examined how the crystallographic fields, created by transient conformational states of the OEC at various time points, affect the thermodynamics of various isomers of the Mn cluster using DFT calculations, with an aim of comprehending the functional roles of the flexible primary coordination sphere in the S2 to S3 transition and in the recovery of the S2 state. The results show that the relative movements of surrounding residues change the size and shape of the cavity of the cluster and thereby affect the thermodynamics of various catalytic intermediates as well as the ability to capture a new water molecule at a coordinatively unsaturated site. The implication of these findings is that the protein dynamics may serve to gate the catalytic reaction efficiently by controlling the sequence of Mn oxidation/reduction and water binding/release. This interpretation is consistent with EPR experiments; g ∼ 5 and g ∼ 3 signals obtained after near-infrared (NIR) excitation of the S3 state at 4 K and a g ∼ 5 only signal produced after prolonged incubation of the S3 state at 77 K can be best explained as originating from water-bound S2 clusters (Stotal = 7/2) under a S3 ligand field, i.e., the immediate one-electron reduction products of the oxyl-oxo (Stotal = 6) and hydroxo-oxo (Stotal = 3) species in the S3 state.


Assuntos
Oxigênio , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Oxirredução , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Água/química
15.
J Phys Chem A ; 115(22): 5625-31, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21568304

RESUMO

The spin-unrestricted Hartree-Fock (UHF)-based coupled cluster singles and doubles (UHF-CCSD) and Mukherjee's state-specific multireference CCSD (MkCCSD) methods are applied to four ring-opening reactions. The spin-restricted Hartree-Fock (RHF)-based CCSD (RHF-CCSD) calculations are also performed for comparison. In the case of the UHF-CCSD method, an approximate spin-projection (AP) method is applied to the broken-symmetry (BS) singlet solution to remove the spin contamination effect. For potential energy curves (PECs) of all reactions presented in this study, the results of RHF-CCSD and UHF-CCSD are substantially different from those of MkCCSD, while the results after the AP method (AP-UCCSD) reproduce the MkCCSD results well. It strongly suggests that the spin contamination effect should be removed by the AP correction even at the UHF-CCSD level to predict reliable energetics of these reactions.

16.
J Phys Chem A ; 114(45): 12116-23, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20979405

RESUMO

In the present study, the concerted and stepwise reaction mechanisms for 1,3-dipole cycloaddition of ozone with ethylene (1) and acrylonitrile (2) are investigated. The stationary points are optimized by using four hybrid R(U)DFT methods. A geometry optimization method based on an approximate spin projection (AP-opt method) is applied to eliminate a spin contamination from the broken-symmetry (BS) solution. The AP-opt method reveals that a diradical intermediate for the stepwise pathway is spurious due to the spin contamination. The revised reaction profile with no diradical intermediate supports the stereospecificity. On the basis of the experimental data, the RCCSD(T) method outperforms AP-UCCSD(T), AP-UBD(T), and MkMRCCSD(4e,4o) for the systems, indicating that the RCCSD(T) method can describe the diradical character of ozone within a framework of single reference wave function. The subsequent single point energy calculations show that the highly synchronous transition state is much more favorable than the asynchronous one for 1. In the case of 2, there is not much difference between two transition states because of its asymmetric structure and charge separations in the transition states.

17.
J Phys Chem A ; 114(30): 7967-74, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20666543

RESUMO

We quantify a spin contamination error caused by a broken-symmetry (BS) method on the geometry at the stationary points and barrier heights of the [2 + 2] reaction between singlet oxygen and ethylene, which goes through a diradical intermediate. Several hybrid GGA, hybrid meta-GGA, and long-range corrected hybrid functionals, O3LYP, B3LYP, PBE0, MPW1B95, BHandHLYP, and omegaB97X, are examined to elucidate their original nature without the spin contamination error. For that purpose, the geometry of each reaction step for the BS state as well as its total energy is corrected by using an approximate spin projection method. The CCSD and CCSD(T) single-point calculations are also carried out at optimized geometries at the DFT level to confirm the results of the DFT methods. The single-point calculations by means of Mukherjee's multireference coupled cluster with single and double excitations at CASSCF(10e,8o)-optimized geometries are also presented to assess the DFT methods. After the energy and geometry corrections, the barrier height of each functional is consistent with conventional closed-shell-type reactions even in the reaction involving singlet diradical species. We also find that the spin contamination error on the geometric change is not negligible especially at the early stage of the reaction ( approximately 3 kcal/mol), where the triplet state is the ground state.

18.
Inorg Chem ; 48(19): 9048-50, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19067544

RESUMO

We synthesized a new porous coordination polymer Cu[Cu(pdt)2], which shows relatively high electrical conductivity (6 x 10(-4) S cm(-1) at 300 K) by the introduction of electron donors and acceptors as building units. This compound is applicable as a porous electrode with high power density. In addition, this compound forms a triangular spin lattice and shows spin frustration.

19.
J Phys Chem A ; 113(52): 15171-87, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19877684

RESUMO

Thermal decomposition of peroxidized coelenterazines with and without external perturbations has been studied theoretically using the hybrid density functional theory (B3LYP) and the Coulomb-attenuating method (CAM). Possible roles of a hydrogen-bonding interface constituted by amino acid residues in the coelenterazine-biding site of aequorin are addressed by using simple model clusters with a polarizable continuum model to grasp some important aspects that may affect the electronic mechanism operating within the photoprotein. Calculations have revealed that the electronic property and stability of the peroxide are greatly affected by its protonation state and/or environmental effects, such as a polarizing medium and specific (localized) short-range electrostatic interactions, which may be critical for the bioluminescence activity. Theory highlights two mechanisms by which the neutral species can be activated, which otherwise decomposes by a homolytic O-O dissociation with a high barrier. In the first mechanism, the Tyr82-His16-Trp86 triad motif facilitates the deprotonation process of the phenolic OH group at the C(6) position of the coelenterazine and thereby makes it a sufficiently good electron donor to activate the O-O bond. In the second mechanism, intramolecular charge transfer is accomplished within the neutral peroxide by a proton delivery mediated via another triad motif, Tyr184-His169-Trp173, without the activation of the substrate itself. The combination of the first and second mechanisms leads to complete electron transfer for the formation of a radical pair as a local intermediate stabilized by the nearby triad motifs.


Assuntos
Imidazóis/química , Peróxidos/química , Pirazinas/química , Temperatura , Equorina/química , Equorina/metabolismo , Sítios de Ligação , Elétrons , Ligação de Hidrogênio , Imidazóis/metabolismo , Modelos Moleculares , Conformação Molecular , Prótons , Pirazinas/metabolismo , Teoria Quântica , Termodinâmica
20.
J Phys Chem A ; 113(17): 5099-104, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19354205

RESUMO

The electronic structure and magnetic interactions of the active site of sweet potato purple acid phosphatase (PAP) were investigated by using UHF, pure DFT (UBLYP), and hybrid DFT methods (UB3LYP and UB2LYP). PAP catalyzes the hydrolysis of a phosphate ester under acidic conditions and contains a binuclear metal center. Sweet potato PAP provides stronger antiferromagnetic coupling than other PAPs. UB3LYP showed reasonably good agreement with the experimental magnetic coupling, indicating that this stronger antiferromagnetic coupling is caused by a mu-oxo bridge in the Fe(III)-Mn(II) binuclear metal center, which is the origin of the asymmetric spin delocalization. The type of bridging ligand is essential for the reaction mechanism, because the bridging ligand is suggested to function as a nucleophile in the reaction. Analyses of the natural orbital and spin density distributions implied the asymmetric spin delocalization on the bridging oxygen. The mechanism and the pathway of the antiferromagnetic coupling between Fe(III) and Mn(II) were discussed, using chemical indices introduced with the occupation numbers of singly occupied natural orbitals.


Assuntos
Fosfatase Ácida/metabolismo , Simulação por Computador , Compostos Ferrosos/química , Glicoproteínas/metabolismo , Ipomoea batatas/enzimologia , Magnetismo , Modelos Químicos , Fosfatase Ácida/química , Catálise , Domínio Catalítico , Elétrons , Glicoproteínas/química , Hidrólise , Ligantes , Compostos de Manganês/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA