Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
2.
Cell ; 184(2): 521-533.e14, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33373587

RESUMO

Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the ß strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Preparações Farmacêuticas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/ultraestrutura , Azepinas/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Oxidiazóis/química , Oxidiazóis/farmacologia , Presenilina-1/química , Presenilina-1/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia
3.
Cell ; 184(2): 370-383.e13, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33333023

RESUMO

Proton-coupled monocarboxylate transporters MCT1-4 catalyze the transmembrane movement of metabolically essential monocarboxylates and have been targeted for cancer treatment because of their enhanced expression in various tumors. Here, we report five cryo-EM structures, at resolutions of 3.0-3.3 Å, of human MCT1 bound to lactate or inhibitors in the presence of Basigin-2, a single transmembrane segment (TM)-containing chaperon. MCT1 exhibits similar outward-open conformations when complexed with lactate or the inhibitors BAY-8002 and AZD3965. In the presence of the inhibitor 7ACC2 or with the neutralization of the proton-coupling residue Asp309 by Asn, similar inward-open structures were captured. Complemented by structural-guided biochemical analyses, our studies reveal the substrate binding and transport mechanism of MCTs, elucidate the mode of action of three anti-cancer drug candidates, and identify the determinants for subtype-specific sensitivities to AZD3965 by MCT1 and MCT4. These findings lay out an important framework for structure-guided drug discovery targeting MCTs.


Assuntos
Antineoplásicos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/química , Simportadores/antagonistas & inibidores , Simportadores/química , Sequência de Aminoácidos , Animais , Basigina/química , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Ligantes , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/ultraestrutura , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Prótons , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Homologia Estrutural de Proteína , Especificidade por Substrato , Simportadores/ultraestrutura , Tiofenos/química , Tiofenos/farmacologia
4.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860739

RESUMO

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Assuntos
Proteínas de Transporte de Monossacarídeos/ultraestrutura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Animais , Antimaláricos , Transporte Biológico , Glucose/metabolismo , Humanos , Malária , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Parasitos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Açúcares/metabolismo
5.
Cell ; 177(2): 339-351.e13, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879786

RESUMO

Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.


Assuntos
Spliceossomos/fisiologia , Spliceossomos/ultraestrutura , Domínio Catalítico/fisiologia , Microscopia Crioeletrônica/métodos , Éxons , Íntrons , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Splicing de RNA/fisiologia , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
6.
Cell ; 171(1): 120-132.e12, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28919079

RESUMO

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.


Assuntos
Íntrons , Spliceossomos/ultraestrutura , Microscopia Crioeletrônica , RNA Helicases DEAD-box/química , Modelos Moleculares , Precursores de RNA/química , Precursores de RNA/ultraestrutura , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Spliceossomos/química
7.
Cell ; 171(7): 1589-1598.e8, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153833

RESUMO

Removal of an intron from a pre-mRNA by the spliceosome results in the ligation of two exons in the post-catalytic spliceosome (known as the P complex). Here, we present a cryo-EM structure of the P complex from Saccharomyces cerevisiae at an average resolution of 3.6 Å. The ligated exon is held in the active site through RNA-RNA contacts. Three bases at the 3' end of the 5' exon remain anchored to loop I of U5 small nuclear RNA, and the conserved AG nucleotides of the 3'-splice site (3'SS) are specifically recognized by the invariant adenine of the branch point sequence, the guanine base at the 5' end of the 5'SS, and an adenine base of U6 snRNA. The 3'SS is stabilized through an interaction with the 1585-loop of Prp8. The P complex structure provides a view on splice junction formation critical for understanding the complete splicing cycle.


Assuntos
Saccharomyces cerevisiae/química , Spliceossomos/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
8.
Cell ; 169(5): 918-929.e14, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28502770

RESUMO

Mechanistic understanding of pre-mRNA splicing requires detailed structural information on various states of the spliceosome. Here we report the cryo electron microscopy (cryo-EM) structure of the human spliceosome just before exon ligation (the C∗ complex) at an average resolution of 3.76 Å. The splicing factor Prp17 stabilizes the active site conformation. The step II factor Slu7 adopts an extended conformation, binds Prp8 and Cwc22, and is poised for selection of the 3'-splice site. Remarkably, the intron lariat traverses through a positively charged central channel of RBM22; this unusual organization suggests mechanisms of intron recruitment, confinement, and release. The protein PRKRIP1 forms a 100-Å α helix linking the distant U2 snRNP to the catalytic center. A 35-residue fragment of the ATPase/helicase Prp22 latches onto Prp8, and the quaternary exon junction complex (EJC) recognizes upstream 5'-exon sequences and associates with Cwc22 and the GTPase Snu114. These structural features reveal important mechanistic insights into exon ligation.


Assuntos
Precursores de RNA/metabolismo , Spliceossomos/química , Spliceossomos/ultraestrutura , Sequência de Bases , Microscopia Crioeletrônica , RNA Helicases DEAD-box/metabolismo , Éxons , Humanos , Íntrons , Modelos Moleculares , Splicing de RNA , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Spliceossomos/metabolismo
9.
Mol Cell ; 82(15): 2769-2778.e4, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35705093

RESUMO

Pre-mRNA splicing involves two sequential reactions: branching and exon ligation. The C complex after branching undergoes remodeling to become the C∗ complex, which executes exon ligation. Here, we report cryo-EM structures of two intermediate human spliceosomal complexes, pre-C∗-I and pre-C∗-II, both at 3.6 Å. In both structures, the 3' splice site is already docked into the active site, the ensuing 3' exon sequences are anchored on PRP8, and the step II factor FAM192A contacts the duplex between U2 snRNA and the branch site. In the transition of pre-C∗-I to pre-C∗-II, the step II factors Cactin, FAM32A, PRKRIP1, and SLU7 are recruited. Notably, the RNA helicase PRP22 is positioned quite differently in the pre-C∗-I, pre-C∗-II, and C∗ complexes, suggesting a role in 3' exon binding and proofreading. Together with information on human C and C∗ complexes, our studies recapitulate a molecular choreography of the C-to-C∗ transition, revealing mechanistic insights into exon ligation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Spliceossomos , Éxons/genética , Humanos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
10.
Nature ; 620(7974): 669-675, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468628

RESUMO

Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.


Assuntos
Histonas , Lisina , Metilação , Complexos Multiproteicos , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilação , Microscopia Crioeletrônica , DNA Fúngico/genética , DNA Fúngico/metabolismo , Epigênese Genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
11.
Nucleic Acids Res ; 52(11): 6718-6727, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38742627

RESUMO

The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between ß-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.


Assuntos
Proteínas de Caenorhabditis elegans , RNA de Cadeia Dupla , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Microscopia Crioeletrônica , Modelos Moleculares , Ligação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Eletricidade Estática
12.
Nature ; 565(7738): 192-197, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598546

RESUMO

Aberrant cleavage of Notch by γ-secretase leads to several types of cancer, but how γ-secretase recognizes its substrate remains unknown. Here we report the cryo-electron microscopy structure of human γ-secretase in complex with a Notch fragment at a resolution of 2.7 Å. The transmembrane helix of Notch is surrounded by three transmembrane domains of PS1, and the carboxyl-terminal ß-strand of the Notch fragment forms a ß-sheet with two substrate-induced ß-strands of PS1 on the intracellular side. Formation of the hybrid ß-sheet is essential for substrate cleavage, which occurs at the carboxyl-terminal end of the Notch transmembrane helix. PS1 undergoes pronounced conformational rearrangement upon substrate binding. These features reveal the structural basis of Notch recognition and have implications for the recruitment of the amyloid precursor protein by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/ultraestrutura , Microscopia Crioeletrônica , Receptores Notch/metabolismo , Receptores Notch/ultraestrutura , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Receptores Notch/química , Especificidade por Substrato
13.
PLoS Biol ; 19(9): e3001386, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499638

RESUMO

Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Microscopia Crioeletrônica , Formiatos , Ácido Láctico/metabolismo , Malária Falciparum , Transportadores de Ácidos Monocarboxílicos/química , Nitritos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 117(18): 9876-9883, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303654

RESUMO

A massive intronic hexanucleotide repeat (GGGGCC) expansion in C9ORF72 is a genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, C9ORF72, together with SMCR8 and WDR41, has been shown to regulate autophagy and function as Rab GEF. However, the precise function of C9ORF72 remains unclear. Here, we report the cryogenic electron microscopy (cryo-EM) structure of the human C9ORF72-SMCR8-WDR41 complex at a resolution of 3.2 Å. The structure reveals the dimeric assembly of a heterotrimer of C9ORF72-SMCR8-WDR41. Notably, the C-terminal tail of C9ORF72 and the DENN domain of SMCR8 play critical roles in the dimerization of the two protomers of the C9ORF72-SMCR8-WDR41 complex. In the protomer, C9ORF72 and WDR41 are joined by SMCR8 without direct interaction. WDR41 binds to the DENN domain of SMCR8 by the C-terminal helix. Interestingly, the prominent structural feature of C9ORF72-SMCR8 resembles that of the FLNC-FNIP2 complex, the GTPase activating protein (GAP) of RagC/D. Structural comparison and sequence alignment revealed that Arg147 of SMCR8 is conserved and corresponds to the arginine finger of FLCN, and biochemical analysis indicated that the Arg147 of SMCR8 is critical to the stimulatory effect of the C9ORF72-SMCR8 complex on Rab8a and Rab11a. Our study not only illustrates the basis of C9ORF72-SMCR8-WDR41 complex assembly but also reveals the GAP activity of the C9ORF72-SMCR8 complex.


Assuntos
Proteínas Relacionadas à Autofagia/ultraestrutura , Proteína C9orf72/ultraestrutura , Proteínas de Transporte/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Sequência de Aminoácidos/genética , Esclerose Lateral Amiotrófica/genética , Arginina/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteína C9orf72/genética , Proteínas de Transporte/genética , Microscopia Crioeletrônica , Filaminas/genética , Filaminas/ultraestrutura , Demência Frontotemporal/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/ultraestrutura , Predisposição Genética para Doença , Humanos , Complexos Multiproteicos/genética , Alinhamento de Sequência , Proteínas rab de Ligação ao GTP/genética
15.
Genes Dev ; 29(22): 2349-61, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26543158

RESUMO

The apoptotic protease-activating factor 1 (Apaf-1) controls the onset of many known forms of intrinsic apoptosis in mammals. Apaf-1 exists in normal cells as an autoinhibited monomer. Upon binding to cytochrome c and dATP, Apaf-1 oligomerizes into a heptameric complex known as the apoptosome, which recruits and activates cell-killing caspases. Here we present an atomic structure of an intact mammalian apoptosome at 3.8 Å resolution, determined by single-particle, cryo-electron microscopy (cryo-EM). Structural analysis, together with structure-guided biochemical characterization, uncovered how cytochrome c releases the autoinhibition of Apaf-1 through specific interactions with the WD40 repeats. Structural comparison with autoinhibited Apaf-1 revealed how dATP binding triggers a set of conformational changes that results in the formation of the apoptosome. Together, these results constitute the molecular mechanism of cytochrome c- and dATP-mediated activation of Apaf-1.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptossomas/química , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Citocromos c/metabolismo , Modelos Moleculares , Animais , Caspase 9/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Citocromos c/genética , Ativação Enzimática/fisiologia , Humanos , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína
16.
Genes Dev ; 29(3): 277-87, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644603

RESUMO

Apoptosis is executed by a cascade of caspase activation. The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. The underlying mechanism by which caspase-9 or Dronc is activated by the apoptosome remains unknown. Here we report the electron cryomicroscopic (cryo-EM) structure of the intact apoptosome from Drosophila melanogaster at 4.0 Å resolution. Analysis of the Drosophila apoptosome, which comprises 16 molecules of the Dark protein (Apaf-1 ortholog), reveals molecular determinants that support the assembly of the 2.5-MDa complex. In the absence of dATP or ATP, Dronc zymogen potently induces formation of the Dark apoptosome, within which Dronc is efficiently activated. At 4.1 Å resolution, the cryo-EM structure of the Dark apoptosome bound to the caspase recruitment domain (CARD) of Dronc (Dronc-CARD) reveals two stacked rings of Dronc-CARD that are sandwiched between two octameric rings of the Dark protein. The specific interactions between Dronc-CARD and both the CARD and the WD40 repeats of a nearby Dark protomer are indispensable for Dronc activation. These findings reveal important mechanistic insights into the activation of initiator caspase by the apoptosome.


Assuntos
Apoptossomas/química , Caspases/metabolismo , Drosophila/enzimologia , Modelos Moleculares , Animais , Apoptossomas/metabolismo , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Ligação Proteica , Estrutura Terciária de Proteína
17.
IUBMB Life ; 74(12): 1180-1199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36082803

RESUMO

Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.


Assuntos
Glucose , Transportadores de Ácidos Monocarboxílicos , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Láctico/metabolismo , Fermentação
18.
Nature ; 525(7568): 212-217, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26280335

RESUMO

Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 Šresolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/ultraestrutura , Microscopia Crioeletrônica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Presenilina-1/química , Presenilina-1/ultraestrutura , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Presenilina-1/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
19.
Nature ; 526(7573): 391-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26176916

RESUMO

The major facilitator superfamily glucose transporters, exemplified by human GLUT1-4, have been central to the study of solute transport. Using lipidic cubic phase crystallization and microfocus X-ray diffraction, we determined the structure of human GLUT3 in complex with D-glucose at 1.5 Å resolution in an outward-occluded conformation. The high-resolution structure allows discrimination of both α- and ß-anomers of D-glucose. Two additional structures of GLUT3 bound to the exofacial inhibitor maltose were obtained at 2.6 Å in the outward-open and 2.4 Å in the outward-occluded states. In all three structures, the ligands are predominantly coordinated by polar residues from the carboxy terminal domain. Conformational transition from outward-open to outward-occluded entails a prominent local rearrangement of the extracellular part of transmembrane segment TM7. Comparison of the outward-facing GLUT3 structures with the inward-open GLUT1 provides insights into the alternating access cycle for GLUTs, whereby the C-terminal domain provides the primary substrate-binding site and the amino-terminal domain undergoes rigid-body rotation with respect to the C-terminal domain. Our studies provide an important framework for the mechanistic and kinetic understanding of GLUTs and shed light on structure-guided ligand design.


Assuntos
Transportador de Glucose Tipo 3/química , Transportador de Glucose Tipo 3/metabolismo , Glucose/química , Glucose/metabolismo , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Cristalografia por Raios X , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Humanos , Cinética , Ligantes , Maltose/química , Maltose/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rotação , Relação Estrutura-Atividade
20.
Nature ; 517(7532): 50-55, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25517095

RESUMO

The ryanodine receptors (RyRs) are high-conductance intracellular Ca(2+) channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5,000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 Å, determined by single-particle electron cryomicroscopy. Three previously uncharacterized domains, named central, handle and helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative-charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity-filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/ultraestrutura , Algoritmos , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Ativação do Canal Iônico , Modelos Moleculares , Peso Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/química , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/ultraestrutura , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA