Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593070

RESUMO

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Animais , Camundongos , Microscopia Crioeletrônica , Glicoproteínas , Internalização do Vírus
2.
Proc Natl Acad Sci U S A ; 119(22): e2122769119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617431

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2­ and HeV G/F­mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus Hendra , Fragmentos Fab das Imunoglobulinas , Proteínas do Envelope Viral , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Vírus Hendra/genética , Vírus Hendra/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Testes de Neutralização , Profilaxia Pós-Exposição , Domínios Proteicos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
3.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202527

RESUMO

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Doenças dos Cavalos , Animais , Austrália/epidemiologia , Vírus Hendra/genética , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia , Vigilância de Evento Sentinela
4.
J Infect Dis ; 221(Suppl 4): S471-S479, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686101

RESUMO

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses that cause severe disease in both animals and humans. There are no approved vaccines or treatments for use in humans; however, therapeutic treatment of both NiV and HeV infection in ferrets and non-human primates with a cross-reactive, neutralizing human monoclonal antibody (mAb), m102.4, targeting the G glycoprotein has been demonstrated. In a previous study, we isolated, characterized, and humanized a cross-reactive, neutralizing anti-F mAb (h5B3.1). The mAb h5B3.1 blocks the required F conformational change needed to facilitate membrane fusion and virus infection, and the epitope recognized by h5B3.1 has been structurally defined; however, the efficacy of h5B3.1 in vivo is unknown. METHODS: The post-infection antiviral activity of h5B3.1 was evaluated in vivo by administration in ferrets after NiV and HeV virus challenge. RESULTS: All subjects that received h5B3.1 from 1 to several days after infection with a high-dose, oral-nasal virus challenge were protected from disease, whereas all controls died. CONCLUSIONS: This is the first successful post-exposure antibody therapy for NiV and HeV using a humanized cross-reactive mAb targeting the F glycoprotein, and the findings suggest that a combination therapy targeting both F and G should be evaluated as a therapy for NiV/HeV infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vírus Hendra , Infecções por Henipavirus/terapia , Vírus Nipah , Proteínas Virais de Fusão/imunologia , Animais , Reações Cruzadas , Furões , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos
5.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32034942

RESUMO

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Assuntos
Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae , Infecções por Henipavirus/veterinária , Henipavirus , Animais , Quirópteros/sangue , Quirópteros/classificação , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Testes Sorológicos , Trinidad e Tobago/epidemiologia
6.
Emerg Infect Dis ; 24(1): 114-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29260678

RESUMO

To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.


Assuntos
Quirópteros/sangue , Quirópteros/virologia , Ebolavirus , Marburgvirus , Proteínas do Envelope Viral/sangue , Animais , Glicoproteínas/sangue , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Estudos Soroepidemiológicos , Singapura/epidemiologia
7.
PLoS Pathog ; 11(12): e1005322, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646856

RESUMO

Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein.


Assuntos
Infecções por Henipavirus/metabolismo , Vírus Nipah/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Vírus Nipah/metabolismo , Conformação Proteica , Proteínas do Envelope Viral/metabolismo
8.
J Virol ; 88(9): 4624-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522928

RESUMO

UNLABELLED: Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. IMPORTANCE: A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.


Assuntos
Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Vírus Hendra/genética , Infecções por Henipavirus/patologia , Oligodesoxirribonucleotídeos/administração & dosagem , Análise de Sobrevida , Vacinação/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38770087

RESUMO

Henipaviruses are enveloped single-stranded, negative-sense RNA viruses of the paramyxovirus family. Two henipaviruses, Nipah virus and Hendra virus, cause a systemic respiratory and/or neurological disease in humans and ten additional species of mammals, with a high fatality rate. Because of their highly pathogenic nature, Nipah virus and Hendra virus are categorized as BSL-4 pathogens, which limits the number and scope of translational research studies on these important human pathogens. To begin to address this limitation, we are developing a BSL-2 model of authentic henipavirus infection in mice, using the non-pathogenic henipavirus, Cedar virus. Notably, wild-type mice are highly resistant to Hendra virus and Nipah virus infection. However, previous work has shown that mice lacking expression of the type I interferon receptor (IFNAR-KO mice) are susceptible to both viruses. Here, we show that luciferase-expressing recombinant Cedar virus (rCedV-luc) is also able to replicate and establish a transient infection in IFNAR-KO mice, but not in wild-type mice. Using longitudinal bioluminescence imaging (BLI) of luciferase expression, we detected rCedV-luc replication as early as 10 h post-infection. Viral replication peaks between days 1 and 3 post-infection, and declines to levels undetectable by BLI by 7 days post-infection. Immunohistochemistry is consistent with viral infection and replication in endothelial cells and other non-immune cell types within tissue parenchyma. Serology analyses demonstrate significant IgG responses to the Cedar virus surface glycoprotein with potent neutralizing activity in IFNAR-KO mice, whereas antibody responses in wild-type animals were non-significant. Overall, these data suggest that rCedV-luc infection of IFNAR-KO mice represents a viable platform for the study of in vivo henipavirus replication, anti-henipavirus host responses and henipavirus-directed therapeutics.

10.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157856

RESUMO

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Sítios de Ligação , Epitopos
11.
J Virol ; 86(21): 11457-71, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915804

RESUMO

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are paramyxoviruses discovered in the mid- to late 1990s that possess a broad host tropism and are known to cause severe and often fatal disease in both humans and animals. HeV and NiV infect cells by a pH-independent membrane fusion mechanism facilitated by their attachment (G) and fusion (F) glycoproteins. Here, several soluble forms of henipavirus F (sF) were engineered and characterized. Recombinant sF was produced by deleting the transmembrane (TM) and cytoplasmic tail (CT) domains and appending a glycosylphosphatidylinositol (GPI) anchor signal sequence followed by GPI-phospholipase D digestion, appending a trimeric coiled-coil (GCNt) domain (sF(GCNt)), or deleting the TM, CT, and fusion peptide domain. These sF glycoproteins were produced as F(0) precursors, and all were apparent stable trimers recognized by NiV-specific antisera. Surprisingly, however, only the GCNt-appended constructs (sF(GCNt)) could elicit cross-reactive henipavirus-neutralizing antibody in mice. In addition, sF(GCNt) constructs could be triggered in vitro by protease cleavage and heat to transition from an apparent prefusion to postfusion conformation, transitioning through an intermediate that could be captured by a peptide corresponding to the C-terminal heptad repeat domain of F. The pre- and postfusion structures of sF(GCNt) and non-GCNt-appended sF could be revealed by electron microscopy and were distinguishable by F-specific monoclonal antibodies. These data suggest that only certain sF constructs could serve as potential subunit vaccine immunogens against henipaviruses and also establish important tools for further structural, functional, and diagnostic studies on these important emerging viruses.


Assuntos
Henipavirus/imunologia , Henipavirus/ultraestrutura , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Células HeLa , Henipavirus/genética , Humanos , Camundongos , Microscopia Eletrônica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
12.
Methods Mol Biol ; 2682: 33-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610572

RESUMO

Henipaviruses possess two envelope glycoproteins, the attachment (G) and the fusion (F) proteins that mediate cellular entry and are the major targets of virus-neutralizing antibody responses. Recombinant expression technologies have been used to produce soluble G and F proteins (sG and sF) that retain native-like oligomeric conformations and epitopes, which are advantageous for the development and characterization of vaccines and antiviral antibody therapeutics. In addition to Hendra virus and Nipah virus tetrameric sG and trimeric sF production, we also describe the expression and purification of Cedar virus tetrameric sG and Ghana virus trimeric sF glycoproteins. These henipavirus glycoproteins were also used as immunizing antigens to generate monoclonal antibodies, and binding was demonstrated with a pan-henipavirus multiplex microsphere immunoassay.


Assuntos
Henipavirus , Henipavirus/genética , Anticorpos Bloqueadores , Anticorpos Monoclonais
13.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37645760

RESUMO

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryo-electron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing previously unknown conformational landscapes and their distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.

14.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243163

RESUMO

The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Proteínas do Envelope Viral/genética , Vírus Hendra/genética , Vírus Nipah/genética , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
15.
EMBO Mol Med ; 15(10): e16394, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767784

RESUMO

Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.


Assuntos
Infecções do Sistema Nervoso Central , Quirópteros , Lyssavirus , Vírus da Raiva , Raiva , Infecções por Rhabdoviridae , Animais , Humanos , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/prevenção & controle , Linfócitos T CD4-Positivos , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Raiva/prevenção & controle
16.
Viruses ; 15(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37766204

RESUMO

Rabies is a fatal zoonosis that is considered a re-emerging infectious disease. Although rabies remains endemic in canines throughout much of the world, vaccination programs have essentially eliminated dog rabies in the Americas and much of Europe. However, despite the goal of eliminating dog rabies in the European Union by 2020, sporadic cases of dog rabies still occur in Eastern Europe, including Georgia. To assess the genetic diversity of the strains recently circulating in Georgia, we sequenced seventy-eight RABV-positive samples from the brain tissues of rabid dogs and jackals using Illumina short-read sequencing of total RNA shotgun libraries. Seventy-seven RABV genomes were successfully assembled and annotated, with seventy-four of them reaching the coding-complete status. Phylogenetic analyses of the nucleoprotein (N) and attachment glycoprotein (G) genes placed all the assembled genomes into the Cosmopolitan clade, consistent with the Georgian origin of the samples. An amino acid alignment of the G glycoprotein ectodomain identified twelve different sequences for this domain among the samples. Only one of the ectodomain groups contained a residue change in an antigenic site, an R264H change in the G5 antigenic site. Three isolates were cultured, and these were found to be efficiently neutralized by the human monoclonal antibody A6. Overall, our data show that recently circulating RABV isolates from Georgian canines are predominantly closely related phylogroup I viruses of the Cosmopolitan clade. Current human rabies vaccines should offer protection against infection by Georgian canine RABVs. The genomes have been deposited in GenBank (accessions: OQ603609-OQ603685).


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Cães , Animais , Humanos , Filogenia , Chacais , Glicoproteínas/genética , Genômica
17.
Nat Commun ; 14(1): 580, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737435

RESUMO

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Epitopos , Ferritinas/genética , Fragmentos Fc das Imunoglobulinas , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tubarões
18.
J Biol Chem ; 286(27): 23975-81, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21592971

RESUMO

The HIV envelope glycoprotein gp120 plays a critical role in virus entry, and thus, its structure is of extreme interest for the development of novel therapeutics and vaccines. To date, high resolution structural information about gp120 in complex with gp41 has proven intractable. In this study, we characterize the structural properties of gp120 in the presence and absence of gp41 domains by NMR. Using the peptide probe 12p1 (sequence, RINNIPWSEAMM), which was identified previously as an entry inhibitor that binds to gp120, we identify atoms of 12p1 in close contact with gp120 in the monomeric and trimeric states. Interestingly, the binding mode of 12p1 with gp120 is similar for clades B and C. In addition, we show a subtle difference in the binding mode of 12p1 in the presence of gp41 domains, i.e. the trimeric state, which we interpret as small differences in the gp120 structure in the presence of gp41.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1/química , Sondas Moleculares/química , Peptídeos/química , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
19.
Science ; 375(6587): 1373-1378, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35239409

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness. The entry of HNVs into host cells requires the attachment (G) and fusion (F) glycoproteins, which are the main targets of antibody responses. To understand viral infection and host immunity, we determined a cryo-electron microscopy structure of the NiV G homotetrameric ectodomain in complex with the nAH1.3 broadly neutralizing antibody Fab fragment. We show that a cocktail of two nonoverlapping G-specific antibodies neutralizes NiV and HeV synergistically and limits the emergence of escape mutants. Analysis of polyclonal serum antibody responses elicited by vaccination of macaques with NiV G indicates that the receptor binding head domain is immunodominant. These results pave the way for implementing multipronged therapeutic strategies against these deadly pathogens.


Assuntos
Antígenos Virais , Glicoproteínas , Vírus Nipah , Proteínas Virais , Ligação Viral , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Vírus Nipah/genética , Vírus Nipah/imunologia , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/imunologia , Internalização do Vírus
20.
Transbound Emerg Dis ; 69(5): e2366-e2377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35491954

RESUMO

Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species.


Assuntos
Quirópteros , Lyssavirus , Ácidos Nucleicos , Animais , Austrália/epidemiologia , Betacoronavirus , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA