Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
J Integr Plant Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924348

RESUMO

IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.

3.
Mol Breed ; 43(7): 56, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37424796

RESUMO

European winter wheat cultivar "Tabasco" was reported to have resistance to powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) in China. In previous studies, Tabasco was reported to have the resistance gene designated as Pm48 on the short arm of chromosome 5D when a mapping population was phenotyped with pathogen isolate Bgt19 collected in China and was genotyped with simple sequence repeat (SSR) markers. In this study, single-nucleotide polymorphism (SNP) chips were used to rapidly determine the resistance gene by mapping a new F2 population that was developed from Tabasco and a susceptible cultivar "Ningmaizi119" and inoculated with pathogen isolate NCF-D-1-1 that was collected in the USA. The segregation of resistance in the population was found to link with Pm2 which was identified in Tabasco. Therefore, it was concluded that the previously reported Pm48 on chromosome arm 5DS in Tabasco should be the Pm2 gene on the same chromosome. The Pm2 was also found in European cultivars "Mattis" and "Claire" but not in any of the accessions from diploid wheat Aegilops tauschii or modern cultivars such as "Gallagher," "Smith's Gold," and "OK Corral" being used in the Great Plains in the USA. A KASP marker was developed to track the resistance allele Pm2 in wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01402-3.

4.
Plant Physiol ; 186(1): 483-496, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576803

RESUMO

Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.


Assuntos
Doenças das Plantas/genética , Plântula/fisiologia , Triticum/fisiologia , Alelos , Resistência à Doença/genética , Plântula/genética , Triticum/genética
5.
Mol Breed ; 42(10): 66, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37313009

RESUMO

Wheat grain yield is affected by plant height, which is the total length of spike, the uppermost internode, and other elongated internodes. In this study, a population of recombinant inbred lines generated from a cross between two advanced winter wheat breeding lines were phenotyped over four locations/years and genotyped by using markers of genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) for mapping of genes for three traits, including spike length, the uppermost internode length, and plant height. Five genomic regions or quantitative trait loci (QTLs) were associated with candidate genes for these traits. A major QTL was associated with Q5A, and two novel haplotypes of Q5A were identified, one for a single nucleotide polymorphism (SNP) at position -2,149 in promoter region and the other for copy number variation. Compared with one copy Q5A on chromosome 5A in Chinese Spring, the novel haplotype of Q5A with two copies Q5A was found to generate spikes that are extremely compacted. A major QTL was associated with allelic variation in the recessive vrn-A1 alleles involving in protein sequences, and this QTL was associated with increased uppermost internode length but not with plant height. A major QTL for plant height was associated with Rht-B1b on chromosome 4B, but its effects could be compromised by two new minor QTLs on chromosome 7. Collectively, the favorable alleles from the four loci can be used to establish the optimal plant height in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01336-2.

6.
New Phytol ; 231(2): 834-848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769506

RESUMO

TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
7.
Theor Appl Genet ; 133(7): 2183-2195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281004

RESUMO

KEY MESSAGE: Heterogeneous Lr34 genes for leaf rust in winter wheat cultivar 'Duster' and KASP markers for allelic variation in exon 11 and exon 22 of Lr34. Wheat, Triticum aestivum (2n = 6x = 42, AABBDD), is a hexaploid species, and each of three homoeologous genomes A, B, and D should have one copy for a gene in its ancestral form if the gene has no duplication. Previously reported leaf rust resistance gene Lr34 has one copy on the short arm of chromosome 7D in hexaploid wheat, and allelic variation in Lr34 is in intron 4, exon 11, exon 12, or exon 22. In this study, we discovered that Oklahoma hard red winter wheat cultivar 'Duster' (PI 644,016) has two copies of the Lr34 gene, the resistance allele Lr34a and the susceptibility allele Lr34b. Both Lr34a and Lr34b were mapped in the same linkage group on chromosome 7D in a doubled-haploid population generated from a cross between Duster and a winter wheat cultivar 'Billings' which carries the susceptibility allele Lr34c. A chromosomal fragment including Lr34 and at least two neighboring genes on its proximal side but excluding genes on its distal side was duplicated in Duster. The Duster Lr34ab allele was associated with tip necrosis and increased resistance against leaf rust at adult plants in the Duster × Billings DH population tested in the field, demonstrating the function of the Duster Lr34ab allele in wheat. We have developed KASP markers for allelic variation in exon 11 and exon 22 of Lr34 in wheat. These markers can be utilized to accelerate the selection of Lr34 in wheat.


Assuntos
Alelos , Basidiomycota/patogenicidade , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Resistência à Doença/genética , Éxons , Genes de Plantas , Ligação Genética , Variação Genética , Genótipo , Haploidia , Íntrons , Necrose , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
9.
Plant Biotechnol J ; 16(1): 186-196, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509374

RESUMO

Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.


Assuntos
Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Triticum/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética
10.
Plant Biotechnol J ; 16(6): 1214-1226, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193541

RESUMO

Wheat (Triticum aestivum) has low nitrogen use efficiency (NUE). The genetic mechanisms controlling NUE are unknown. Positional cloning of a major quantitative trait locus for N-related agronomic traits showed that the vernalization gene TaVRN-A1 was tightly linked with TaNUE1, the gene shown to influence NUE in wheat. Because of an Ala180 /Val180 substitution, TaVRN-A1a and TaVRN-A1b proteins interact differentially with TaANR1, a protein encoded by a wheat orthologue of Arabidopsis nitrate regulated 1 (ANR1). The transcripts of both TaVRN-A1 and TaANR1 were down-regulated by nitrogen. TaANR1 was functionally characterized in TaANR1::RNAi transgenic wheat, and in a natural mutant with a 23-bp deletion including 10-bp at the 5' end of intron 5 and 13-bp of exon 6 in gDNA sequence in its gDNA sequence, which produced transcript that lacked the full 84-bp exon 6. Both TaANR1 and TaHOX1 bound to the Ala180 /Val180 position of TaVRN-A1. Genetically incorporating favourable alleles from TaVRN-A1, TaANR1 and TaHOX1 increased grain yield from 9.84% to 11.58% in the field. Molecular markers for allelic variation of the genes that regulate nitrogen can be used in breeding programmes aimed at improving NUE and yield in novel wheat cultivars.


Assuntos
Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/metabolismo , Sequência de Bases , Genes de Plantas , Mutação , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
11.
BMC Genomics ; 18(1): 838, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089022

RESUMO

BACKGROUND: 'Apogee' has a very short life cycle among wheat cultivars (flowering 25 days after planting under a long day and without vernalization), and it is a unique genetic material that can be used to accelerate cycling breeding lines. However, little is known about the genetic basis of the super-short life of Apogee wheat. RESULTS: In this study, Apogee was crossed with a strong winter wheat cultivar 'Overland', and 858 F2 plants were generated and tested in a greenhouse under constant warm temperature and long days. Apogee wheat was found to have the early alleles for four flowering time genes, which were ranked in the order of vrn-A1 > VRN-B1 > vrn-D3 > PPD-D1 according to their effect intensity. All these Apogee alleles for early flowering showed complete or partial dominance effects in the F2 population. Surprisingly, Apogee was found to have the same alleles at vrn-A1a and vrn-D3a for early flowering as observed in winter wheat cultivar 'Jagger.' It was also found that the vrn-A1a gene was epistatic to VRN-B1 and vrn-D3. The dominant vrn-D3a alone was not sufficient to cause the transition from vegetative to reproductive development in winter plants without vernalization but was able to accelerate flowering in those plants that carry the vrn-A1a or Vrn-B1 alleles. The genetic effects of the vernalization and photoperiod genes were validated in Apogee x Overland F3 populations. CONCLUSION: VRN-A1, VRN-B1, VRN-D3, and PPD-D1 are the major genes that enabled Apogee to produce the very short life cycle. This study greatly advanced the molecular understanding of the multiple flowering genes under different genetic backgrounds and provided useful molecular tools that can be used to accelerate winter wheat breeding schemes.


Assuntos
Genes de Plantas , Estudos de Associação Genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genética Populacional , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
12.
Theor Appl Genet ; 129(2): 345-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602233

RESUMO

KEY MESSAGE: The wheat ortholog of the rice gene OsXA21 against bacterial leaf blight showed resistance to multiple pests in bread wheat but different interacting proteins. ABSTRACT: A quantitative trait locus QYr.osu-5A on the long arm of chromosome 5A in bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) was previously reported to confer consistent resistance in adult plants to predominant stripe rust races, but the gene causing the quantitative trait locus (QTL) is not known. Single-nucleotide polymorphism (SNP) markers were used to saturate the QTL region. Comparative and syntenic regions between wheat and rice (Oryza sativa) were applied to identify candidate genes for QYr.osu-5A. TaXA21-A1, which is referred to as a wheat ortholog of OsXA21-like gene on chromosome 9 in rice, was mapped under the peak of the QYr.osu-5A. TaXA21-A1 not only explained the phenotypic variation in reaction to different stripe rust races but also showed significant effects on resistance to powdery mildew and Hessian fly biotype BP. The natural allelic variation resulted in the alternations of four amino acids in deduced TaXA21-A1 proteins. The interacting proteins of TaXA21-A1 were different from those identified by OsXA21 on rice chromosome 11 against bacterial leaf blight. TaXA21-A1 confers unique resistance against multiple pests in wheat but might not have common protein interactors or thus overlapping functions with OsXA21 in rice. XA21 function has diverged during evolution of cereal crops. The molecular marker developed for TaXA21-A1 would accelerate its application of the candidate gene at the QYr.osu-5A locus in wheat breeding programs.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Sequência de Aminoácidos , Animais , Bactérias , Basidiomycota , Passeio de Cromossomo , Cromossomos de Plantas , Produtos Agrícolas/genética , Dípteros , Genes de Plantas , Marcadores Genéticos , Variação Genética , Dados de Sequência Molecular , Oryza/genética , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos
13.
BMC Genomics ; 16: 108, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765046

RESUMO

BACKGROUND: One of the reasons hard red winter wheat cultivar 'Duster' (PI 644016) is widely grown in the southern Great Plains is that it confers a consistently high level of resistance to biotype GP of Hessian fly (Hf). However, little is known about the genetic mechanism underlying Hf resistance in Duster. This study aimed to unravel complex structures of the Hf region on chromosome 1AS in wheat by using genotyping-by-sequencing (GBS) markers and single nucleotide polymorphism (SNP) markers. RESULTS: Doubled haploid (DH) lines generated from a cross between two winter wheat cultivars, 'Duster' and 'Billings' , were used to identify genes in Duster responsible for effective and consistent resistance to Hf. Segregation in reaction of the 282 DH lines to Hf biotype GP fit a one-gene model. The DH population was genotyped using 2,358 markers developed using the GBS approach. A major QTL, explaining 88% of the total phenotypic variation, was mapped to a chromosome region that spanned 178 cM and contained 205 GBS markers plus 1 SSR marker and 1 gene marker, with 0.86 cM per marker in genetic distance. The analyses of GBS marker sequences and further mapping of SSR and gene markers enabled location of the QTL-containing linkage group on the short arm of chromosome 1A. Comparative mapping of the common markers for the gene for QHf.osu-1A (d) in Duster and the Hf-resistance gene for QHf.osu-1A (74) in cultivar '2174' showed that the two Hf resistance genes are located on the same chromosome arm 1AS, only 11.2 cM apart in genetic distance. The gene at QHf.osu-1A (d) in Duster has been delimited within a 2.7 cM region. CONCLUSION: Two distinct resistance genes exist on the short arm of chromosome 1A as found in the two hard red winter cultivars, 2174 and Duster. Whereas the Hf resistance gene in 2174 is likely allelic to one or more of the previously mapped resistance genes (H9, H10, H11, H16, or H17) in wheat, the gene in Duster is novel and confers a more consistent phenotype than 2174 in response to biotype GP infestation in controlled-environment assays.


Assuntos
Mapeamento Cromossômico , Dípteros/fisiologia , Genes de Plantas , Triticum/genética , Animais , Cromossomos de Plantas , DNA/química , DNA/isolamento & purificação , Ligação Genética , Marcadores Genéticos , Genótipo , Interações Hospedeiro-Parasita/genética , Repetições de Microssatélites/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Triticum/parasitologia
14.
Plant J ; 76(5): 742-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24033823

RESUMO

Winter wheat requires a period of low temperatures to accelerate flowering (vernalization). This requirement could make winter wheat more vulnerable to elevated global temperature via insufficient vernalization. All known vernalization genes are cloned according to qualitative variation in vernalization requirement between spring and winter wheat, but the genes controlling quantitative variation for more or less vernalization requirement among winter wheat cultivars remain unknown. We report here that the gene for the vernalization requirement duration in winter wheat was cloned using a BC(1)F(2:3) population that segregated in a 3:1 ratio of early-flowering plants and late-flowering plants after vernalization for 3 weeks. The positional cloning of the gene for vernalization requirement duration demonstrated that this trait is controlled by TaVRN-A1 at the protein level. The Ala(180) in vrn-A1a, encoded by the dominant allele for 3-week vernalization, was mutated to Val(180) in vrn-A1b, encoded by the recessive allele for 6-week vernalization. Further studies with in vitro protein pull-down assays and immunoprecipitation analyses indicated that the mutated Val(180) in vrn-A1b protein decreased the ability to bind with TaHOX1 (the first homeobox protein in Triticum aestivum). The direct binding of TaVRN-A1 and TaHOX1 proteins was confirmed in the nucleus of living plant cells by bimolecular fluorescence complementation (BiFC) analyses. The TaHOX1 gene was found to be upregulated by low temperatures, and to have a significant genetic effect on heading date, suggesting that TaHOX1 functions in the flowering pathway in winter wheat.


Assuntos
Temperatura Baixa , Flores/fisiologia , Proteínas de Plantas/metabolismo , Triticum/genética , Alelos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Locos de Características Quantitativas , Triticum/fisiologia
15.
Front Plant Sci ; 15: 1324085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903420

RESUMO

Sugarcane aphid has emerged as a major pest of sorghum recently, and a few sorghum accessions were identified for resistance to this aphid so far. However, the molecular and genetic mechanisms underlying this resistance are still unclear. To understand these mechanisms, transcriptomics was conducted in resistant Tx2783 and susceptible BTx623 sorghum genotypes infested with sugarcane aphids. A principal component analysis revealed differences in the transcriptomic profiles of the two genotypes. The pathway analysis of the differentially expressed genes (DEGs) indicated the upregulation of a set of genes related to signal perception (nucleotide-binding, leucine-rich repeat proteins), signal transduction [mitogen-activated protein kinases signaling, salicylic acid (SA), and jasmonic acid (JA)], and plant defense (transcription factors, flavonoids, and terpenoids). The upregulation of the selected DEGs was verified by real-time quantitative PCR data analysis, performed on the resistant and susceptible genotypes. A phytohormone bioassay experiment showed a decrease in aphid population, plant mortality, and damage in the susceptible genotype when treated with JA and SA. Together, the results indicate that the set of genes, pathways, and defense compounds is involved in host plant resistance to aphids. These findings shed light on the specific role of each DEG, thus advancing our understanding of the genetic and molecular mechanisms of host plant resistance to aphids.

16.
BMC Genomics ; 14: 369, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23724909

RESUMO

BACKGROUND: Hessian fly (Mayetiola destructor) is one of the most destructive pests of wheat. The genes encoding 12-oxo-phytodienoic acid reductase (OPR) and lipoxygenase (LOX) play critical roles in insect resistance pathways in higher plants, but little is known about genes controlling resistance to Hessian fly in wheat. RESULTS: In this study, 154 F6:8 recombinant inbred lines (RILs) generated from a cross between two cultivars, 'Jagger' and '2174' of hexaploid wheat (2n = 6 × =42; AABBDD), were used to map genes associated with resistance to Hessian fly. Two QTLs were identified. The first one was a major QTL on chromosome 1A (QHf.osu-1A), which explained 70% of the total phenotypic variation. The resistant allele at this locus in cultivar 2174 could be orthologous to one or more of the previously mapped resistance genes (H9, H10, H11, H16, and H17) in tetraploid wheat. The second QTL was a minor QTL on chromosome 2A (QHf.osu-2A), which accounted for 18% of the total phenotypic variation. The resistant allele at this locus in 2174 is collinear to an Yr17-containing-fragment translocated from chromosome 2N of Triticum ventricosum (2n = 4 × =28; DDNN) in Jagger. Genetic mapping results showed that two OPR genes, TaOPR1-A and TaOPR2-A, were tightly associated with QHf.osu-1A and QHf.osu-2A, respectively. Another OPR gene and three LOX genes were mapped but not associated with Hessian fly resistance in the segregating population. CONCLUSIONS: This study has located two major QTLs/genes in bread wheat that can be directly used in wheat breeding programs and has also provided insights for the genetic association and disassociation of Hessian fly resistance with OPR and LOX genes in wheat.


Assuntos
Dípteros/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Poliploidia , Triticum/genética , Triticum/fisiologia , Animais , Mapeamento Cromossômico , Hibridização Genética , Lipoxigenase/genética , Locos de Características Quantitativas/genética , Especificidade da Espécie , Triticum/enzimologia
17.
Mol Genet Genomics ; 288(5-6): 261-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23591592

RESUMO

A precise regulation of flowering time is critical for plant reproductive success, and therefore, a better understanding of the natural variation in genes regulating the initiation of the reproductive phase is required to develop well-adapted varieties. In both monocot and dicot species, the FLOWERING LOCUS T (FT) is a central integrator of seasonal signals perceived by the leaves. The encoded mobile protein (florigen) is transmitted to the apical meristem where it induces flowering. The FT homolog in barley (Hordeum vulgare L.), designated HvFT1, was shown to correspond to the vernalization locus VRN-H3, and natural alleles for spring and winter growth habit were identified. In this study, we demonstrate that the HvFT1 allele present in the barley genetic stock (BGS213) associated with a dominant spring growth habit carries at least four identical copies of HvFT1, whereas most barley varieties have a single copy. Increased copy number is associated with earlier transcriptional up-regulation of HvFT1 and a spring growth habit. This allele is epistatic to winter alleles for VRN-H1 and VRN-H2. Among accessions with one HvFT1 copy, haplotype differences in the HvFT1 promoter and first intron are also associated with differences in flowering time, which are modulated by genetic background. These different HvFT1 alleles can be used to develop barley varieties adapted to different or changing environments. Our results, together with studies of other wheat and barley flowering genes, show that copy number variation plays an important role in the regulation of developmental processes in the temperate cereals.


Assuntos
Variações do Número de Cópias de DNA , Flores/genética , Hordeum/genética , Alelos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Haplótipos , Fatores de Tempo
18.
Front Plant Sci ; 13: 992811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092425

RESUMO

Molecular markers are developed to accelerate deployment of genes for desirable traits segregated in a bi-parental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if such markers for multiple traits could be identified in an F2 population. In this study, single nucleotide polymorphisms (SNP) chips were used to identify major genes for heading date and awn in an F2 population without developing RILs or DH lines. The population was generated from a cross between a locally adapted spring wheat cultivar "Ningmaizi119" and a winter wheat cultivar "Tabasco" with a diverse genetic background. It was found that the dominant Vrn-D1 allele could make Ningmaizi119 flowered a few months earlier than Tabasco in the greenhouse and without vernalization. The observed effects of the allele were validated in F3 populations. It was also found that the dominant Ali-A1 allele for awnless trait in Tabasco or the recessive ali-A1 allele for awn trait in Ningmaizi119 was segregated in the F2 population. The allelic variation in the ALI-A1 gene relies not only on the DNA polymorphisms in the promoter but also on gene copy number, with one copy ali-A1 in Ningmaizi119 but two copies Ali-A1 in Tabasco based on RT-PCR results. According to wheat genome sequences, cultivar "Mattis" has two copies Ali-A1 and cultivar "Spelta" has four copies Ali-A in a chromosome that was uncharacterized (ChrUN), in addition to one copy on chromosome 5A. This study rapidly characterized the effects of the dominant Vrn-D1 allele and identified the haplotype of Ali-A1 in gene copy number in the F2 segregation population of common wheat will accelerate their deployment in cycling lines in breeding.

19.
Front Plant Sci ; 13: 892642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592560

RESUMO

The number of spikelets per spike is an important trait that directly affects grain yield in wheat. Three quantitative trait loci (QTLs) associated with spikelet nodes per spike (SNS) were mapped in a population of recombinant inbred lines generated from a cross between two advanced breeding lines of winter wheat based on the phenotypic variation evaluated over six locations/years. Two of the three QTLs are QSns.sxau-2A at the WHEATFRIZZY PANICLE (WFZP) loci and QSns.sxau-7A at the WHEAT ORTHOLOG OF APO1 (WAPO1) loci. The WFZP-A1b allele with a 14-bp deletion at QSns.sxau-2A was associated with increased spikelets per spike. WAPO-A1e, as a novel allele at WAPO1, were regulated at the transcript level that was associated with the SNS trait. The third SNS QTL, QSns.sxau-7D on chromosome 7D, was not associated with homoeologous WAPO-D1 or any other genes known to regulate SNS. The favorable alleles for each of WZFP-A1, WAPO-A1, and QSns.sxau-7D are identified and incorporated to increase up to 3.4 spikelets per spike in the RIL lines. Molecular markers for the alleles were developed. This study has advanced our understanding of the genetic basis of natural variation in spikelet development in wheat.

20.
Science ; 376(6589): 180-183, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389775

RESUMO

Spike architecture influences grain yield in wheat. We report the map-based cloning of a gene determining the number of spikelet nodes per spike in common wheat. The cloned gene is named TaCOL-B5 and encodes a CONSTANS-like protein that is orthologous to COL5 in plant species. Constitutive overexpression of the dominant TaCol-B5 allele but without the region encoding B-boxes in a common wheat cultivar increases the number of spikelet nodes per spike and produces more tillers and spikes, thereby enhancing grain yield in transgenic plants under field conditions. Allelic variation in TaCOL-B5 results in amino acid substitutions leading to differential protein phosphorylation by the protein kinase TaK4. The TaCol-B5 allele is present in emmer wheat but is rare in a global collection of modern wheat cultivars.


Assuntos
Grão Comestível , Triticum , Alelos , Clonagem Molecular , Grão Comestível/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA