Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Biol Rep ; 51(1): 554, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642178

RESUMO

BACKGROUND: The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS: In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS: The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.


Assuntos
Genoma de Planta , Zea mays , Genoma de Planta/genética , Família Multigênica , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000374

RESUMO

Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.


Assuntos
Doenças Hematológicas , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Hematológicas/metabolismo , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Adesão Celular , Animais , Moléculas de Adesão Celular/metabolismo , Movimento Celular
3.
Langmuir ; 39(29): 10189-10198, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432677

RESUMO

Electrowetting-on-dielectric (EWOD) technology has been considered as a promising candidate for digital microfluidic (DMF) applications due to its outstanding flexibility and integrability. The dielectric layer with a hydrophobic surface is the key element of an EWOD device, determining its driving voltage, reliability, and lifetime. Hereby, inspired by the ionic-liquid-filled structuring polymer with high capacitance independent on thickness, namely ion gel (IG), we develop a polymer (P)-ion gel-amorphous fluoropolymer, namely, PIGAF, composite film as a replaceable hydrophobic dielectric layer for fabrication of a high-efficiency and stable EWOD-DMF device at relatively low voltage. The results show that the proposed EWOD devices using the PIGAF-based dielectric layer can achieve a large contact angle (θ) change of ∼50° and excellent reversibility with a contact angle hysteresis of ≤5° at a relatively low voltage of 30 Vrms. More importantly, the EWOD actuation voltage did not change obviously with the PIGAF film thickness in the range of several to tens of microns, enabling the thickness of the film to be adjusted according to the demand within a certain range while keeping the actuation voltage low. An EWOD-DMF device can be prepared by simply stacking a PIGAF film onto a PCB board, demonstrating stable droplet actuation (motion) at 30 Vrms and 1 kHz as well as a maximum moving velocity of 69 mm/s at 140 Vrms and 1 kHz. The PIGAF film was highly stable and reliable, maintaining excellent EWOD performance after multiple droplet manipulations (≥50 cycles) or long-term storage of 1 year. The proposed EWOD-DMF device has been demonstrated for digital chemical reactions and biomedical sensing applications.

4.
Electrophoresis ; 43(21-22): 2156-2164, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35305273

RESUMO

Microfluidic impedance cytometry shows a great value in biomedical diagnosis. However, the crosstalk between neighboring microelectrodes strongly weakens the impedance signal. Hereby, we demonstrate a novel microfluidic impedance cytometer consisted of sensing electrodes and ground electrodes (GNDs). The simulation reveals a signal enhancement by more than five times with GNDs compared to that without ones. We also found that the linear correlation between the impedance at a high frequency and that at a low frequency varies as microparticle size changes, which can be used for microparticle classification. The study can help with microelectrode optimization and signal processing for microfluidic impedance analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microeletrodos , Impedância Elétrica , Citometria de Fluxo
5.
Anal Chem ; 93(21): 7606-7615, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003009

RESUMO

Prefocusing of cell mixtures through sheath flow is a common technique used for continuous and high-efficiency dielectrophoretic (DEP) cell separation. However, it usually limits the separation flow velocity and requires a complex multichannel fluid control system that hinders the integration of a DEP separator with other microfluidic functionalities for comprehensive biomedical applications. Here, we propose and develop a high-efficiency, sheathless particle/cell separation method without prefocusing based on flow-field-assisted DEP by combining the effects of AC electric field (E-field) and flow field (F-field). A hollow lemon-shaped electrode array is designed to generate a long-range E-field gradient in the microchannel, which can effectively induce lateral displacements of particles/cells in a continuous flow. A series of arc-shaped protrusion structures is designed along the microchannel to form a F-field, which can effectively guide the particles/cells toward the targeted E-field region without prefocusing. By tuning the E-field, two distinct modes can be realized and switched in one single device, including the sheathless separation (ShLS) and the adjustable particle mixing ratio (AMR) modes. In the ShLS mode, we have achieved the continuous separation of breast cancer cells from erythrocytes with a recovery rate of 95.5% and the separation of polystyrene particles from yeast cells with a purity of 97.1% at flow velocities over 2.59 mm/s in a 2 cm channel under optimized conditions. The AMR mode provides a strategy for controlling the mixing ratio of different particles/cells as a well-defined pretreatment method for biomedical research studies. The proposed microchip is easy to use and displays high versatility for biological and medical applications.


Assuntos
Técnicas Analíticas Microfluídicas , Separação Celular , Eletrodos , Eletroforese , Microfluídica , Fenômenos Físicos
6.
Soft Matter ; 16(15): 3649-3656, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32202268

RESUMO

The deposition of colloidal particles can cause particulate fouling on solid walls and the formation of clogs during the transport of colloidal suspensions in microchannels. The particle deposition rate grows over time and blocks the microchannels eventually. The process of particle deposition is affected by various physicochemical parameters. In this paper, we investigate the effect of temperature gradient on the particle deposition of a pressure-driven suspension flow in a microchannel. We designed a microfluidic device which can allow direct observation of the real-time process of particle deposition with single-particle resolution along the direction of applied temperature gradient. The experimental results show that particle deposition rate is decreased by increasing the applied temperature gradients. Based on the framework of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, we then derive a mass transport model to describe the particle deposition under different temperature gradients. The model shows that the observed reduction of particle deposition rate with temperature gradient is due to the collective effect of the temperature gradient and the bulk solution temperature in the two steps of the particle deposition process, including the particle transport and the particle attachment. Our work illustrates the critical effects of temperature gradients on the particle deposition in microchannels, and is expected to provide a better understanding of thermally driven particulate fouling and clogging in microfluidic devices.

7.
Environ Res ; 191: 110131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861727

RESUMO

The current research regarding anaerobic ammonium oxidation (anammox) for the treatment of landfill leachate mainly focuses on a temperature range of 30-35 °C. However, achieving and maintaining anammox at lower temperatures would widen its application for the treatment of landfill leachate. This study, attempts to address this issue by using a combined process involving an upflow anaerobic sludge blanket (UASB), anoxic/oxic (A/O) reactor, anammox reactor (ANAOR), and anaerobic sequencing batch reactor (ASBR) to enrich anammox bacteria at relatively low temperatures. The rapid start-up of the partial nitrification-anammox process for landfill leachate treatment was achieved and maintained at 13-22 °C. The experiment was divided into phase 1 (20-22 °C) and phase 2 (13-15 °C). The results showed that 87.1% of the chemical oxygen demand (COD), 97.4-97.7% of the ammonium nitrogen (NH4+-N), and 93.3-94.7% of the total nitrogen (TN), were removed. At least 29.3% and 11.4% of NH4+-N was removed through anammox in phases 1 and 2, respectively, with an accumulation NO2--N ratio of 86.1-88.6%. Candidatus Kuenenia was the dominant anammox bacteria in the anammox process. A low temperature of 13-15 °C did not affect ammonia oxidizing bacteria (AOB), and their relative abundance in the A/O reactor ranged from 27.29% to 33.22%.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Anaerobiose , Reatores Biológicos , Desnitrificação , Manutenção , Nitrificação , Nitrogênio , Oxirredução , Esgotos , Temperatura
8.
Toxicol Appl Pharmacol ; 382: 114703, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398421

RESUMO

Pulmonary fibrosis (PF) is a fatal and irreversible lung disease that eventually causes respiratory failure, lung dysfunction and death. The peptide DHNNPQIR-NH2 (DR8) has been reported to possess potent antioxidant activity, and an imbalance of oxidation/antioxidation is a crucial mechanism that causes PF. Here, we studied the ability of DR8 to improve PF and further explored the pathway in which DR8 plays a critical role. We found that after prophylactic or therapeutic treatment with DR8, fibrosis-associated indices, including marker proteins, proinflammatory cytokines and profibrogenic cytokines, were significantly downregulated. Importantly, DR8 could reduce bleomycin-induced pathological changes and collagen deposition, especially collagen I content. Furthermore, DR8 prominently upregulated nonenzymatic antioxidants and enzymatic antioxidants. Consistent with the in vivo results, we observed that DR8 significantly inhibited the proliferation and reactive oxygen species (ROS) generation of A549 cells and NIH3T3 cells stimulated with transforming growth factor-ß1 (TGF-ß1), as well as decreased NADPH oxidase 4 (NOX4) levels under the same conditions. Moreover, DR8 reversed the TGF-ß1-induced upregulation of phosphorylated ERK1/2 and p38 MAPK in cells and the bleomycin-induced upregulation of these indices in mice. Our results indicate that DR8 could prevent and treat PF by reducing oxidative damage and suppressing the TGF-ß/MAPK pathway. Because of the high efficiency and low toxicity of DR8, we consider that DR8 could be a candidate drug for PF, and our studies establish a foundation for the development of a lead compound to be used as a therapy for fibrosis-related diseases.


Assuntos
Bleomicina/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Fator de Crescimento Transformador beta/antagonistas & inibidores , Células A549 , Animais , Antibióticos Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Células NIH 3T3 , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento
9.
Mol Pharm ; 16(1): 371-381, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30543441

RESUMO

Rapeseed protein hydrolysates have recently shown in vitro antioxidant and anti-inflammatory activities. However, scant data exist about their in vivo activities. Here, we report that the peptide DHNNPQIR (hereinafter referred to as RAP-8), a bioactive peptide originated from rapeseed protein, exhibits excellent in vivo efficacy in mouse models of nonalcoholic steatohepatitis (NASH) and hepatic fibrosis. We demonstrated that RAP-8 significantly reduced hepatic steatosis and improved insulin resistance and lipid metabolism. Furthermore, RAP-8 showed markedly reduced hepatic inflammation, fibrosis, liver injury, and metabolic deterioration. In particular, RAP-8 directly suppressed fibrosis-associated gene expression, including α-smooth muscle actin (α-Sma) and collagen type I (Col-1α) in the liver of mice in vivo. In addtion, RAP-8 significantly decreased macrophage infiltration and reduced pro-inflammatory cytokines secretion. Finally, we found that RAP-8 administration significantly decreased oxidative stress-induced apoptosis in liver injury induced by CCl4. Therefore, our results suggest that RAP-8 could be available for treatment of NASH and NASH-related metabolic disorders as a potential therapeutic candidate.


Assuntos
Antioxidantes/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas de Plantas/uso terapêutico , Animais , Brassica rapa/química , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Proteínas S100/uso terapêutico
10.
Amino Acids ; 50(10): 1471-1483, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136030

RESUMO

Pseudomonas aeruginosa is particularly difficult to treat because it possesses a variety of resistance mechanisms and because it often forms biofilms. Antimicrobial peptides represent promising candidates for future templates of antibiotic-resistant bacterial infections due to their unique mechanism of antimicrobial action. In this study, we first found that the antimicrobial peptide Feleucin-K3 has potent antimicrobial activity against not only the standard strain of P. aeruginosa but also against the multidrug-resistant strains isolated from clinics. Then, the structure-activity relationship of the peptide was investigated using alanine and D-amino acid scanning. Among the analogs synthesized, FK-1D showed much more potent antimicrobial activity, superior stability, and very low toxicity, and it was able to permeabilize bacterial membranes. Furthermore, it exhibited significant anti-biofilm activity. More importantly, FK-1D showed excellent antimicrobial activity in vivo, especially against clinical multidrug-resistant bacteria, in contrast to ceftazidime. Our results suggested that FK-1D could be subjected to fixed-point modification in the first and fourth sites to further optimize its medicinal properties and potential as a lead compound for the treatment of infections caused by multidrug-resistant P. aeruginosa and the associated biofilms.


Assuntos
Aminoácidos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/fisiologia , Relação Estrutura-Atividade
11.
ISA Trans ; 149: 266-280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627161

RESUMO

This paper develops two-filter particle smoothing (TFPS) algorithms for the nonlinear fixed-interval smoothing problem of one generalized hidden Markov model (GHMM), where the current observation depends not only on the current state, but also on one-step previous state. Firstly, by Bayesian approach, the two-filter smoothing (TFS) formula for GHMM is established to calculate smoothing densities. In this TFS formula, the backward information prediction density is generally not a density of the state. This results in a difficulty that the normal sequential Monte Carlo (SMC) sampling technique cannot be directly applied to design corresponding TFPS algorithms based on the TFS formula. To solve this difficulty, a generalized TFS formula for GHMM is then proposed by introducing a sequence of artificial densities. By combining this generalized TFS formula, SMC, and the auxiliary variable sampling technique, a basic auxiliary TFPS (ATFPS) algorithm with quadratic computational complexity is proposed, and a simplified ATFPS algorithm with linear computational complexity is further developed. Finally, the effectiveness and superiority of the two proposed ATFPS algorithms for GHMM are verified via simulation examples and real experimental data.

12.
Biomimetics (Basel) ; 9(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534807

RESUMO

The facial expressions of humanoid robots play a crucial role in human-computer information interactions. However, there is a lack of quantitative evaluation methods for the anthropomorphism of robot facial expressions. In this study, we designed and manufactured a humanoid robot head that was capable of successfully realizing six basic facial expressions. The driving force behind the mechanism was efficiently transmitted to the silicone skin through a rigid linkage drive and snap button connection, which improves both the driving efficiency and the lifespan of the silicone skin. We used human facial expressions as a basis for simulating and acquiring the movement parameters. Subsequently, we designed a control system for the humanoid robot head in order to achieve these facial expressions. Moreover, we used a flexible vertical graphene sensor to measure strain on both the human face and the silicone skin of the humanoid robot head. We then proposed a method to evaluate the anthropomorphic degree of the robot's facial expressions by using the difference rate of strain. The feasibility of this method was confirmed through experiments in facial expression recognition. The evaluation results indicated a high degree of anthropomorphism for the six basic facial expressions which were achieved by the humanoid robot head. Moreover, this study also investigates factors affecting the reproduction of expressions. Finally, the impulse was calculated based on the strain curves of the energy consumption of the humanoid robot head to complete different facial expressions. This offers a reference for fellow researchers when designing humanoid robot heads, based on energy consumption ratios. To conclude, this paper offers data references for optimizing the mechanisms and selecting the drive components of the humanoid robot head. This was realized by considering the anthropomorphic degree and energy consumption of each part. Additionally, a new method for evaluating robot facial expressions is proposed.

13.
J Zhejiang Univ Sci B ; 25(4): 341-353, 2024 Apr 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38584095

RESUMO

Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-ß1 (TGF-ß1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Transdução de Sinais , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Fator de Crescimento Transformador beta1 , Rim/metabolismo , Fibrose , Biomarcadores/metabolismo
14.
Genes (Basel) ; 15(2)2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397155

RESUMO

Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Vacinas , Animais , Suínos , Feminino , Infecções por Coronavirus/veterinária , Proteínas Virais , Diarreia/veterinária
15.
Int J Biol Macromol ; 254(Pt 1): 127722, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907173

RESUMO

Porcine epidemic diarrhea virus (PEDV) infection causes immunosuppression and clinical symptoms such as vomiting, watery diarrhea, dehydration, and even death in piglets. TRIM28, an E3 ubiquitin ligase, is involved in the regulation of autophagy. However, the role of TRIM28 in PEDV infection is unknown. This study aimed to determine whether TRIM28 acts as a host factor for PEDV immune escape. We found that depletion of TRIM28 inhibited PEDV replication, whereas overexpression of TRIM28 promoted the viral replication in host cells. Furthermore, knockdown of TRIM28 reversed PEDV-induced downregulation of the JAK/STAT1 pathway. Treatment with the mitophagic activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP) attenuated the activating effect of TRIM28 depletion on the expression of the STAT1 pathway-related proteins. Treatment with CCCP also reduced the nuclear translocation of pSTAT1. Moreover, TRIM28, via its RING domain, interacted with PEDV N. Overexpression of TRIM28 induced mitophagy, which could be enhanced by co-expression with PEDV N. The results indicate that PEDV infection upregulates the expression of TRIM28, which induces mitophagy, leading to inhibition of the JAK-STAT1 pathway. This research unveils a new mechanism by which PEDV can hijack host cellular TRIM28 to promote its own replication.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Chlorocebus aethiops , Mitofagia , Carbonil Cianeto m-Clorofenil Hidrazona , Replicação Viral , Células Vero
16.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793591

RESUMO

In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Deleção de Genes , Herpesvirus Suídeo 1 , Vacinas contra Pseudorraiva , Pseudorraiva , Animais , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Pseudorraiva/virologia , Vacinas contra Pseudorraiva/imunologia , Vacinas contra Pseudorraiva/genética , Vacinas contra Pseudorraiva/administração & dosagem , Camundongos Endogâmicos BALB C , Suínos , Feminino , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Recombinação Homóloga , Citocinas/metabolismo , China
17.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508790

RESUMO

The copolymers of cycloolefin (COC), a type of thermoplastic material, have been widely used for the large-scale industrial fabrication of droplet microfluidic devices, which is often performed using hot-embossing or injection-molding techniques. The generation of droplets and the uniformity of droplet sizes are significantly affected by the surface wettability of COC during fabrication and the pressure stability of the employed fluid pump during operation. In order to alleviate the effects of undesirable surface wettability and pressure variation on the generation of droplets in COC-based devices, a simple surface modification procedure was applied to hydrophobically modify the surfaces of COC-based microchannels for large-scale industrial production. The surface modification procedure consisted of an oxygen plasma treatment of the polymer surface followed by a solution-phase reaction in fluorocarbon solvent. The experimental results demonstrate that following the proposed surface modification, the COC droplet microfluidic devices could stably generate microvolume water droplets with a small coefficient of variation, even if the pressure of the dispersed phase (water) fluctuated. The durability test results regarding the modified surfaces show that the hydrophobicity of the modified COC surfaces could be sustained for up to four months, deteriorating with time thereafter. Our study can provide a potential solution useful in and guidance for the large-scale industrial production of droplet microfluidic devices for various applications, including polymerase chain reaction and single-cell analysis.

18.
Microbiol Spectr ; : e0525722, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668395

RESUMO

Rabies kills more than 59,000 people annually, mainly in developing countries. Previous studies on the evolution and distribution of rabies viruses (RABVs) were scattered. Here, we explore the evolution and distribution of this deadly virus from a novel panorama view. Multiple bioinformatic software tools were employed to analyze the phylogenetic diversity, evolution, spatiotemporal, and distribution of RABVs. The analyses were based on 1,202 qualified full-length genomes of RABVs and numerous literatures. Of the 10 distinct phylogenetic clades of RABV that we identified, more frequent intra- and inter-clade recombination occurs in the sequences of Asian-SEA, Arctic, and Cosmopolitan clades isolated from China, while according to existing sequence information, RABV might originate from bats (posterior probability, PP = 0.75, PP = 0.60 inferred from N and L genes, separately) in North America (PP = 0.57, PP = 0.62 inferred from N and L genes, separately). Due to the difference in evolutionary rate of N (2.22 × 10-4 subs/site/year, 95% HPD 1.99-2.47 × 10-4 subs/site/year) and L genes (1.67 × 10-4 subs/site/year, 95% HPD 1.59-1.74 × 10-4 subs/site/year), the root age was 1,406.6 (95% HPD 1,291.2-1,518.2) and 1,122.7 (95% HPD 1,052.4-1,193.9) inferred from N and L genes, separately. Among other findings, Mephitidae plays an important role in the interspecific transmission and communication of RABV, which we found tends to spread to populations genetically proximate to the host. We also identified amino acids under positive selection in different genes of different clades as well as single nucleotide variation sites important for different lineages. IMPORTANCE Rabies virus is widely distributed all over the world, and wild animals are its largest potential reservoir. Our study offers a panorama view about evolution and distribution of rabies viruses and emphasizes the need to monitor the transmission dynamics of animal rabies.

19.
Biosens Bioelectron ; 239: 115609, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611446

RESUMO

Revolutionary all-in-one RPA-CRISPR assays are rapidly becoming the most sought-after tools for point-of-care testing (POCT) due to their high sensitivity and ease of use. Despite the availability of one-pot methods for specific targets, the development of more efficient methods for new targets remains a significant challenge. In this study, we present a rapid and universal approach to establishing an all-in-one RPA-Cas12a method CORDSv2 based on rational balancing amplification and Cas12a cleavage, which achieves ultrasensitive detection of several targets, including SARS-CoV-2, ASFV, HPV16, and HPV18. CORDSv2 demonstrates a limit of detection (LOD) of 0.6 cp/µL and 100% sensitivity for SARS-CoV-2, comparable to qPCR. Combining with our portable device(hippo-CORDS), it has a visual detection LOD of 6 cp/µL and a sensitivity up to 100% for SARS-CoV-2 and 97% for Ct<35 ASFV samples, surpassing most one-pot visual methods. To simplify and accelerate the process for new targets, we also develop a de novo autodesigner by which the optimal couples of primers and crRNA can be selected rapidly. As a universal all-in-one RPA-CRISPR method for on-site testing, CORDSv2 becomes an attractive choice for rapid and accurate diagnosis in resource-limited settings.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus de RNA , Humanos , Sistemas CRISPR-Cas , COVID-19/diagnóstico , SARS-CoV-2 , DNA
20.
Genes Dis ; 9(6): 1493-1505, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157506

RESUMO

Annexin A1, a well-known endogenous anti-inflammatory mediator, plays a critical role in a variety of pathological processes. Fibrosis is described by a failure of tissue regeneration and contributes to the development of many diseases. Accumulating evidence supports that Annexin A1 participates in the progression of tissue fibrosis. However, the fundamental mechanisms by which Annexin A1 regulates fibrosis remain elusive, and even the functions of Annexin A1 in fibrotic diseases are still paradoxical. This review focuses on the roles of Annexin A1 in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the therapy potential of Annexin A1 in fibrosis, and presents future research interests and directions in fibrotic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA