Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 25(6): 2070-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23771895

RESUMO

Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.


Assuntos
Proteínas de Domínio MADS/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
2.
Nat Genet ; 39(6): 787-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486095

RESUMO

Plant leaves show pronounced plasticity of size and form. In the classical, partially dominant mutation Lanceolate (La), the large compound leaves of tomato (Solanum lycopersicum) are converted into small simple ones. We show that LA encodes a transcription factor from the TCP family containing an miR319-binding site. Five independent La isolates are gain-of-function alleles that result from point mutations within the miR319-binding site and confer partial resistance of the La transcripts to microRNA (miRNA)-directed inhibition. The reduced sensitivity to miRNA regulation leads to elevated LA expression in very young La leaf primordia and to precocious differentiation of leaf margins. In contrast, downregulation of several LA-like genes using ectopic expression of miR319 resulted in larger leaflets and continuous growth of leaf margins. Our results imply that regulation of LA by miR319 defines a flexible window of morphogenetic competence along the developing leaf margin that is required for leaf elaboration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Folhas de Planta/genética , Solanum lycopersicum/genética , Primers do DNA/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Exp Bot ; 65(8): 2071-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24706720

RESUMO

The geometry of leaf margins is an important shape characteristic that distinguishes among different leaf phenotypes. Current definitions of leaf shape are qualitative and do not allow quantification of differences in shape between phenotypes. This is especially true for leaves with some non-trivial three-dimensional (3D) configurations. Here we present a novel geometrical method novel geometrical methods to define, measure, and quantify waviness and lobiness of leaves. The method is based on obtaining the curve of the leaf rim from a 3D surface measurement and decomposing its local curvature vector into the normal and geodesic components. We suggest that leaf waviness is associated with oscillating normal curvature along the margins, while lobiness is associated with oscillating geodesic curvature. We provide a way to integrate these local measures into global waviness and lobiness quantities. Using these novel definitions, we analysed the changes in leaf shape of two Arabidopsis genotypes, either as a function of gene mis-expression induction level or as a function of time. These definitions and experimental methods open the way for a more quantitative study of the shape of leaves and other growing slender organs.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Botânica/métodos , Dexametasona/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Genéticos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética
4.
Plant J ; 68(4): 571-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21771122

RESUMO

Elaboration of a compound leaf shape depends on extended morphogenetic activity in developing leaves. In tomato (Solanum lycopersicum), the CIN-TCP transcription factor LANCEOLATE (LA) promotes leaf differentiation. LA is negatively regulated by miR319 during the early stages of leaf development, and decreased sensitivity of LA mRNA to miR319 recognition in the semi-dominant mutant La leads to prematurely increased LA expression, precocious leaf differentiation and a simpler and smaller leaf. Increased levels or responses of the plant hormone gibberellin (GA) in tomato leaves also led to a simplified leaf form. Here, we show that LA activity is mediated in part by GA. Expression of the SlGA20 oxidase1 (SlGA20ox1) gene, which encodes an enzyme in the GA biosynthesis pathway, is increased in gain-of-function La mutants and reduced in plants that over-express miR319. Conversely, the transcript levels of the GA deactivation gene SlGA2 oxidase4 (SlGA2ox4) are increased in plants over-expressing miR319. The miR319 over-expression phenotype is suppressed by exogenous GA application and by a mutation in the PROCERA (PRO) gene, which encodes an inhibitor of the GA response. SlGA2ox4 is expressed in initiating leaflets during early leaf development. Its expression expands as a result of miR319 over-expression, and its over-expression leads to increased leaf complexity. These results suggest that LA activity is partly mediated by positive regulation of the GA response, probably by regulation of GA levels.


Assuntos
Giberelinas/farmacologia , MicroRNAs/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
5.
Curr Opin Plant Biol ; 9(5): 484-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16877025

RESUMO

Plant organs are produced in meristems in a continuous and predictable but nevertheless flexible manner. Phytohormones and transcription factors cooperate to balance meristem maintenance and organ production. Recent research has provided clues to the mechanisms underlying this cooperation. KNOTTED1-like homeobox (KNOX) and WUSCHEL (WUS) transcription factors facilitate high cytokinin activity in the shoot apical meristem (SAM), whereas high gibberellin and auxin activities promote the initiation of lateral organs at specific sites in the SAM flanks.


Assuntos
Arabidopsis/fisiologia , Meristema/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Citocininas/metabolismo , Citocininas/fisiologia , Regulação para Baixo , Giberelinas/metabolismo , Proteínas de Homeodomínio/fisiologia , Ácidos Indolacéticos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia
6.
Curr Biol ; 15(17): 1566-71, 2005 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16139212

RESUMO

Plant architecture is shaped through the continuous formation of organs by meristems. Class I KNOTTED1-like homeobox (KNOXI) genes are expressed in the shoot apical meristem (SAM) and are required for SAM maintenance. KNOXI proteins and cytokinin, a plant hormone intimately associated with the regulation of cell division, share overlapping roles, such as meristem maintenance and repression of senescence, but their mechanistic and hierarchical relationship have yet to be defined. Here, we show that activation of three different KNOXI proteins using an inducible system resulted in a rapid increase in mRNA levels of the cytokinin biosynthesis gene isopentenyl transferase 7 (AtIPT7) and in the activation of ARR5, a cytokinin response factor. We further demonstrate a rapid and dramatic increase in cytokinin levels following activation of the KNOXI protein SHOOT MERISTEMLESS (STM). Application of exogenous cytokinin or expression of a cytokinin biosynthesis gene through the STM promoter partially rescued the stm mutant. We conclude that activation of cytokinin biosynthesis mediates KNOXI function in meristem maintenance. KNOXI proteins emerge as central regulators of hormone levels in plant meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/biossíntese , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Líquida , Primers do DNA , Proteínas de Homeodomínio/genética , Espectrometria de Massas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Plant Signal Behav ; 7(7): 807-10, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751297

RESUMO

Arabidopsis TCPs are a family of basic helix loop helix (bHLH)-type transcription factors. Previous studies suggested that antagonistic activities of class I TCPs and class II TCPs are correlated with cell proliferation. We have recently shown that the class I TCPs AtTCP14 and AtTCP15 promote typical cytokinin (CK) responses in Arabidopsis, and proposed that they mediate the effect of CK on cell divisions. To further study the role of AtTCP14 and AtTCP15 in plant development, we expressed them in tomato plants. AtTCP14 and AtTCP15-expressing tomato plants were semi-dwarf, had a reduced apical dominance and developed ectopic meristems on leaflet petioles. CK application to tomato seedlings promoted axillary bud outgrowth and this effect was enhanced in the transgenic AtTCP14 and AtTCP15 overexpressing plants. The results of this study extend our previous suggestion that AtTCP14 and AtTCP15 modulate the plant sensitivity to CK.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA