Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nature ; 591(7848): 72-77, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658694

RESUMO

Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

2.
Small ; : e2406691, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394991

RESUMO

Functional third components targeted to improve a specific property of organic solar cells is an effective strategy. However, introducing a third component to simultaneously improve efficiency and stability and achieve good performance in thick-film devices has rarely been reported. Herein, low diffusion third components IDCN and ID2CN are reported to achieve a power conversion efficiency (PCE) of 18.08% and a high short-circuit current (J SC) of 27.82 mA cm-2, one of the highest values based on PM6:Y6. They increase light harvesting in the range of 400-500 nm while enhancing energy transfer via Förster resonance energy transfer (FRET). A tightly ordered molecular arrangement is achieved by modulating the preaggregation and film formation kinetics of Y6, which enhance exciton dissociation and charge transport. Moreover, the low-diffusion third component can effectively restrict the diffusion of Y6 to improve the morphology stability, and the T90 lifetime is increased from 689 to 1545 h. In 300 nm thick-film devices, PM6:ID2CN:Y6 achieves a PCE of 15.01%, much higher than PM6:Y6's 12.83%, demonstrating the great potential of ID2CN in thick-film devices.

3.
Small ; : e2405415, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225371

RESUMO

Solvent additives with a high boiling point (BP) and low vapor pressure (VP) have formed a key handle for improving the performance of organic solar cells (OSCs). However, it is not always clear whether they remain in the active-layer film after deposition, which can negatively affect the reproducibility and stability of OSCs. In this study, an easily removable solvent additive (4-chloro-2-fluoroiodobenzene (CFIB)) with a low BP and high VP is introduced, behaving like volatile solid additives that can be completely removed during the device fabrication process. In-depth studies of CFIB addition into the D18-Cl donor and N3 acceptor validate its dominant non-covalent intermolecular interactions with N3 through effective electrostatic interactions. Such phenomena improve charge dynamics and kinetics by optimizing the morphology, leading to enhanced performance of D18-Cl:N3-based devices with a power conversion efficiency of 18.54%. The CFIB-treated device exhibits exceptional thermal stability (T80 lifetime = 120 h) at 85 °C compared with the CFIB-free device, because of its morphological robustness by evolving no residual CFIB in the film. The CFIB features a combination of advantages of solvent (easy application) and solid (high volatility) additives, demonstrating its great potential use in the commercial mass production of OSCs.

4.
Nano Lett ; 23(11): 5092-5100, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212638

RESUMO

Highly efficient electrocatalysts for the oxygen evolution reaction (OER) in neutral electrolytes are indispensable for practical electrochemical and photoelectrochemical water splitting technologies. However, there is a lack of good, neutral OER electrocatalysts because of the poor stability when H+ accumulates during the OER and slow OER kinetics at neutral pH. Herein, we report Ir species nanocluster-anchored, Co/Fe-layered double hydroxide (LDH) nanostructures in which the crystalline nature of LDH-restrained corrosion associated with H+ and the Ir species dramatically enhanced the OEC kinetics at neutral pH. The optimized OER electrocatalyst demonstrated a low overpotential of 323 mV (at 10 mA cm-2) and a record low Tafel slope of 42.8 mV dec-1. When it was integrated with an organic semiconductor-based photoanode, we obtained a photocurrent density of 15.2 mA cm-2 at 1.23 V versus reversible hydrogen in neutral electrolyte, which is the highest among all reported photoanodes to our knowledge.

5.
Angew Chem Int Ed Engl ; 63(15): e202401097, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38308505

RESUMO

It is highly challenging to reproducibly prepare semiconducting polymers with targeted molecular weight tailored for next-generation photovoltaic applications. Once such an easily accessible methodology is established, which can not only contribute to overcome the current limitation of the statistically determined nature of semiconducting polymers, but also facilitate rapid incorporation into the broad synthetic chemists' toolbox. Here, we describe a simple yet robust ultrasonication-assisted Stille polymerization for accessing semiconducting polymers with high-precision tailored molecular weights (from low to ultrahigh molecular weight ranges) while mitigating their interbatch variations. We propose that ultrasound-induced simultaneous physical and chemical events enable precise control of the semiconducting polymers' molecular weights with high reproducibility to satisfy all the optical/electrical and morphological demands of diverse types of high-performance semiconducting polymer-based devices; as demonstrated in in-depth experimental screenings in applications of both organic and perovskite photovoltaics. We believe that this methodology provides a fast development of new and existing semiconducting polymers with the highest-level performances possible on various photovoltaic devices.

6.
Angew Chem Int Ed Engl ; 63(15): e202400590, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38318728

RESUMO

Polymer solar cells (PSCs) rely on a blend of small molecular acceptors (SMAs) with polymer donors, where thermodynamic relaxation of SMAs poses critical concerns on operational stability. To tackle this issue, tethered SMAs, wherein multiple SMA-subunits are connected to the aromatic-core via flexible chains, are proposed. This design aims to an elevated glass transition temperature (Tg) for a dynamical control. However, attaining an elevated Tg value with additional SMA subunits introduces complexity to the molecular packing, posing a significant challenge in realizing both high stability and power conversion efficiency (PCE). In this study, we initiate isomer engineering on the benzene-carboxylate core and find that meta-positioned dimeric BDY-ß exhibits more favorable molecular packing compared to its para-positioned counterpart, BDY-α. With this encouraging result, we expand our approach by introducing an additional SMA unit onto the aromatic core of BDY-ß, maintaining a meta-position relative to each SMA unit location in the tethered acceptor. This systematic aromatic-core engineering results in a star-shaped C3h-positioned molecular geometry. The supramolecular interactions of SMA units in the trimer contribute to enhancements in Tg value, crystallinity, and a red-shifted absorption compared to dimers. These characteristics result in a noteworthy increase in PCE to 18.24 %, coupled with a remarkable short-circuit current density of 27.06 mA cm-2. More significantly, the trimer-based devices delivered an excellent thermal stability with over 95 % of their initial efficiency after 1200 h thermal degradation. Our findings underscore the promise and feasibility of tethered trimeric structures in achieving highly ordered aggregation behavior and increased Tg value in PSCs, simultaneously improving in device efficiency and thermal stability.

7.
Small ; 19(18): e2206607, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36717277

RESUMO

Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π-π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.

8.
Small ; 19(27): e2300507, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010009

RESUMO

Both organic solar cells (OSCs) and organic thermoelectrics (OTEs) are promising energy-harvesting technologies for future renewable and sustainable energy sources. Among various material systems, organic conjugated polymers are an emerging material class for the active layers of both OSCs and OTEs. However, organic conjugated polymers showing both OSC and OTE properties are rarely reported because of the different requirements toward the OSCs and OTEs. In this study, the first simultaneous investigation of the OSC and OTE properties of a wide-bandgap polymer PBQx-TF and its backbone isomer iso-PBQx-TF are reported. All wide-bandgap polymers form face-on orientations in a thin-film state, but PBQx-TF has more of a crystalline character than iso-PBQx-TF, originating from the backbone isomeric structures of α,α '/ß,ß '-connection between two thiophene rings. Additionally, iso-PBQx-TF shows inactive OSC and poor OTE properties, probably because of the absorption mismatch and unfavorable molecular orientations. At the same time, PBQx-TF exhibits both decent OSC and OTE performances, indicating that it satisfies the requirements for both OSCs and OTEs. This study presents the OSC and OTE dual-functional energy-harvesting wide-bandgap polymer and the future research directions for hybrid energy-harvesting materials.

9.
Small ; 19(52): e2304996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635097

RESUMO

Both ternary copolymerization and ternary blending are effective methods to fine-tune polymer structure and manipulate thin-film morphology to improve device performance. In this work, three D-A-A-A (D: donor, A: acceptor) terpolymer donors (FY1, FY2, and FY3) are synthesized by introducing BDD (1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione) units into the D-A alternating copolymer PM6 backbone. Owing to the promoted conjugated planarity and excellent absorption of BDD, the obtained terpolymers display an extended absorption range and enhanced π-π stacking orientation, which is a promising third component in ternary device. As a result, the optimal FY1:PM6:BTP-eC9-based ternary device afforded an impressive power conversion efficiency (PCE) as high as 18.52%, owing to the efficient charge transport, negligible energy loss, and suitable domain size. The result provides an efficient method to obtain high-performance polymer solar cells by using analogous polymer donors in ternary device.

10.
Small ; 19(12): e2206233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592416

RESUMO

Albeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance. As a result, the regioregular P2F exhibits a maximum power factor (PF) of up to 113.27 µW m-1  K-2 , more than three times that of the regiorandom PRF (35.35 µW m-1  K-2 ). However, the regular backbone also implies lower miscibility with a dopant, negatively affecting TE performance. Therefore, the trade-off between doping efficiency and miscibility plays a vital role in OTE materials, and this work sheds light on the molecular design strategy of OTE polymers with state-of-the-art performances.

11.
Chemistry ; 29(45): e202300653, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191934

RESUMO

Realizing efficient all-polymer solar cell (APSC) acceptors typically involves increased building block synthetic complexity, hence potentially unscalable syntheses and/or prohibitive costs. Here we report the synthesis, characterization, and implementation in APSCs of three new polymer acceptors P1-P3 using a scalable donor fragment, bis(2-octyldodecyl)anthra[1,2-b : 5,6-b']dithiophene-4,10-dicarboxylate (ADT) co-polymerized with the high-efficiency acceptor units, NDI, Y6, and IDIC. All three copolymers have comparable photophysics to known polymers; however, APSCs fabricated by blending P1, P2 and P3 with donor polymers PM5 and PM6 exhibit modest power conversion efficiencies (PCEs), with the champion P2-based APSC achieving PCE=5.64 %. Detailed morphological and microstructural analysis by AFM and GIWAXS reveal a non-optimal APSC active layer morphology, which suppresses charge transport. Despite the modest efficiencies, these APSCs demonstrate the feasibility of using ADT as a scalable and inexpensive electron rich/donor building block for APSCs.

12.
Phys Chem Chem Phys ; 25(25): 17001-17009, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337735

RESUMO

All-polymer solar cells (all-PSCs), based on p-type polymer donors and n-type acceptors as the active layer, offer exceptional promise because of excellent thermal stability, superior film formation, and good mechanical stress as a unique bulk heterojunction (BHJ) solar cell combination. Therefore, tuning the molecular composition between polymers is crucial for optimizing power conversion efficiency (PCE) in these all-PSC systems. In this study, we synthesized a series of naphthalene diimide (NDI)-based random terpolymers P(NDI-BDD10), P(NDI-TPD10), P(NDI-TT10), and P(NDI-2FQ10) with axisymmetric (BDD, TPD) and asymmetric (TT, 2FQ) electron acceptors. Compared with the blend morphology of PBDB-T:N2200, their diverse effects due to the addition of trace amounts of axisymmetric and asymmetric components were comprehensively investigated using physical and surface analyses and structural simulations. Consequently, most of our polymer acceptors demonstrated improved fill factors (FFs) in the optimal morphology. P(NDI-BDD10)-based devices achieved the highest PCE of 6.80% and FF of 69.1%, while the architecturally most asymmetric P(NDI-TT10)-based devices reached the lowest PCE of 4.52% despite an enhanced FF of 65.4%. As a result, the appropriate molecular arrangement is crucial for obtaining the desired morphology and improved PCE. Our findings give novel molecular design insight into the distinctions between axisymmetric and asymmetric electron acceptors and seem significant for achieving improved morphological features and efficiency.

13.
Angew Chem Int Ed Engl ; 62(39): e202308267, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37539636

RESUMO

Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices.

14.
Angew Chem Int Ed Engl ; 62(42): e202308832, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626468

RESUMO

In the molecular optimizations of non-fullerene acceptors (NFAs), extending the central core can tune the energy levels, reduce nonradiative energy loss, enhance the intramolecular (donor-acceptor and acceptor-acceptor) packing, facilitate the charge transport, and improve device performance. In this study, a new strategy was employed to synthesize acceptors featuring conjugation-extended electron-deficient cores. Among these, the acceptor CH-BBQ, embedded with benzobisthiadiazole, exhibited an optimal fibrillar network morphology, enhanced crystallinity, and improved charge generation/transport in blend films, leading to a power conversion efficiency of 18.94 % for CH-BBQ-based ternary organic solar cells (OSCs; 18.19 % for binary OSCs) owing to its delicate structure design and electronic configuration tuning. Both experimental and theoretical approaches were used to systematically investigate the influence of the central electron-deficient core on the properties of the acceptor and device performance. The electron-deficient core modulation paves a new pathway in the molecular engineering of NFAs, propelling relevant research forward.

15.
Small ; 18(20): e2200734, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35434914

RESUMO

Developing robust materials is very critical and faces a big challenge for high-performance large-area all-polymer solar cells (all-PSCs) by printing methods. Herein, the authors combine the advantages of the terpolymerization strategy with the non-conjugated backbone strategy to regulate the molecular aggregation rationally during the film-forming printing process, facilitating a facile printing process for large-area all-PSCs. A series of terpolymer acceptors PYSe-Clx (x = 0, 10, 20, and 30) is also developed, which can effectively fine-tune the morphology and photoelectric properties of the active layer. The PBDB-T: PYSe-Cl20-based all-PSC delivers a significantly improved power cconversion efficiency (PCE) than the one with PBDB-T: PYSe (14.21% vs 12.45%). By addition of a small amount of non-conjugated polymer acceptor PTClo-Y, the ternary all-PSC reaches a PCE of 15.26%. More importantly, the regulation of molecular aggregation enables a facile blade-coating process of the large-area device. A record PCE of 13.81% for large-area devices (1.21 cm2 ) is obtained, which is the highest value for large-area all-PSCs fabricated by blade-coating. The environmentally friendly solvent processed large-area device also obtains an excellent performance of 13.21%. This work provides a simple and effective molecular design strategy of robust materials for high-performance large-area all-PSCs by a printing process.

16.
Phys Chem Chem Phys ; 24(4): 1982-1992, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34897314

RESUMO

By taking advantage of bulk-heterojunction structures formed by blending conjugated donor polymers and non-fullerene acceptors, organic photovoltaic devices have recently attained promising power conversion efficiencies of above 18%. For optimizing organic photovoltaic devices, it is essential to understand the elementary processes that constitute light harvesters. Utilising femtosecond-resolved spectroscopic techniques that can access the timescales of locally excited (LE) state and charge-transfer (CT)/-separated (CS) states, herein we explored their photophysics in single chains of the top-notch performance donor-acceptor polymer, PM6, which has been widely used as a donor in state-of-the-art non-fullerene organic photovoltaic devices, in a single LE state per chain regime. Our observations revealed the ultrafast formation of a CT state and its equilibrium with the parent LE state. From the chain-length dependence of their lifetimes, the equilibrated states were found to idle until they reach a chain folding. At the chain folding, the CT state transforms into an interchain CT state that bifurcates into forming a CS state or annihilation within a picosecond. The observation of prevalent nonexponential behaviour in the relaxation of the transient species is attributed to the wide chain-length distribution that determines the emergence of the chain foldings in a single chain, thus, the lifetime of a LE and equilibrated CT states. Our findings indicate that the abundance of chain folding, where the generation of the "reactive" CS state is initiated from the interchain CT state, is essential for maximising charge carriers in organic photovoltaic devices based on PM6.

17.
Angew Chem Int Ed Engl ; 61(21): e202200329, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35263008

RESUMO

Although ternary organic solar cells (OSCs) have unique advantages in improving device performance, the morphology assembly in the ternary-phase would be more uncertain or complex than that in the binary-phase. Here, we propose a new concept of oligomer-assisted photoactive layers for high-performance OSCs. The formed alloy-like phase of the oligomer : host polymer blend enabled the oligomer-assisted OSCs to fuse the advantages of both binary and ternary devices, exhibiting substantially enhanced performance and stability compared to the control devices. With the addition of oligomers, outstanding efficiencies of 17.33 % for a PM6 : Y6 device, 18.32 % for a PM6 : BTP-eC9 device, and 17.13 % for a PM6/Y6 pseudo-bilayer device were achieved, all of which are one of the highest values in their corresponding fields. The improved performance originated from the downshift energy levels, enhanced light absorption, optimized blend morphology, favorable charge dynamics, and reduced non-radiative energy loss.

18.
Small ; 17(47): e2104451, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643026

RESUMO

The energy loss (Eloss ), especially the nonradiative recombination loss and energetic disorder, needs to be minimized to improve the device performance with a small voltage (VOC ) loss. Urbach energy (EU ) of organic photovoltaic materials is related to energetic disorder, which can predict the Eloss of the corresponding device. Herein, a polymer donor (PBDS-TCl) with Si and Cl functional atoms for organic solar cells (OSCs) is synthesized. It can be found that the VOC and Eloss can be well manipulated by regulation of the energy level of the polymer donor and EU , which is dominated by the morphology. A low energetic disorder with an EU of 23.7 meV, a low driving force of 0.08 eV, and a low Eloss of 0.41 eV are achieved for the PBDS-TCl:Y6-based OSCs. Consequently, an impressive open circuit voltage (VOC ) of 0.92 V is obtained. To the best of knowledge, the VOC value and Eloss are both the record values for the Y6-based device. These results demonstrate that fine-tuning the polymer donor by functional atom modification on the side chain is a promising way to reduce EU and energy loss, as well as obtain small driving force and high VOC for highly efficient OSCs.

19.
Chemistry ; 27(54): 13527-13533, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34406681

RESUMO

Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.

20.
Angew Chem Int Ed Engl ; 60(10): 5036-5055, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840360

RESUMO

The emerging energy crisis has focused significant worldwide attention on solar cells. Although crystalline silicon solar cells are currently widely used, their high cost limits the development of solar power generation. Consequently, hybrid solar cells are becoming increasingly important, especially organic-Si hybrid solar cells (HSCs). Organic-Si HSCs combine a mature technology and high efficiency with the low-temperature manufacturing process and tunable optoelectronic properties of organic solar cells. The organic material can be P3HT, carbon nanotubes, graphene, and PEDOT:PSS. Here we review the performance of PEDOT:PSS/Si HSCs and methods for improving their efficiency, such as PEDOT:PSS modification, optimization of the trapping effect, passivation of the silicon surface, addition of an interface layer, improvement of a back contact, and optimization of the metal top electrode. This Review should help fill the gap in this area and provide perspectives for the future development of the PEDOT:PSS/Si HSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA