Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(9): 1214-1226, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977207

RESUMO

Duplications of the Xq28 region are a common cause of X-linked intellectual disability (XLID). The RAB39B gene locates in Xq28 and has been implicated in disease pathogenesis. However, whether increased dosage of RAB39B leads to cognitive impairment and synaptic dysfunction remains elusive. Herein, we overexpressed RAB39B in mouse brain by injecting AAVs into bilateral ventricles of neonatal animals. We found that at 2 months of age, neuronal overexpression of RAB39B impaired the recognition memory and the short-term working memory in mice and resulted in certain autism-like behaviours, including social novelty defect and repetitive grooming behaviour in female mice. Moreover, overexpression of RAB39B decreased dendritic arborization of primary neurons in vitro and reduced synaptic transmission in female mice. Neuronal overexpression of RAB39B also altered autophagy without affecting levels and PSD distribution of synaptic proteins. Our results demonstrate that overexpression of RAB39B compromises normal neuronal development, thereby resulting in dysfunctional synaptic transmission and certain intellectual disability and behavioural abnormalities in mice. These findings identify a molecular mechanism underlying XLID with increased copy numbers of Xq28 and provide potential strategies for disease intervention.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Animais , Camundongos , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Transtorno Autístico/genética , Transmissão Sináptica , Animais Recém-Nascidos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Front Aging Neurosci ; 15: 1087823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761179

RESUMO

Parkinson's disease (PD) is a common neurodegenerative movement disorder with undetermined etiology. A major pathological hallmark of PD is the progressive degeneration of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in the RAB39B gene, which encodes a neuronal-specific small GTPase RAB39B, have been associated with X-linked intellectual disability and pathologically confirmed early-onset PD in multiple families. However, the role of RAB39B in PD pathogenesis remains elusive. In this study, we treated Rab39b knock-out (KO) mice with MPTP to explore whether RAB39B deficiency could alter MPTP-induced behavioral impairments and dopaminergic neuron degeneration. Surprisingly, we found that MPTP treatment impaired motor activity and led to loss of tyrosine hydroxylase-positive dopaminergic neurons and gliosis in both WT and Rab39b KO mice. However, RAB39B deficiency did not alter MPTP-induced impairments. These results suggest that RAB39B deficiency does not contribute to PD-like phenotypes through compromising dopaminergic neurons in mice; and its role in PD requires further scrutiny.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA