Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
4.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
5.
Nucleic Acids Res ; 46(22): 11759-11775, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30335163

RESUMO

Constitutive heterochromatin undergoes a dynamic clustering and spatial reorganization during myogenic differentiation. However the detailed mechanisms and its role in cell differentiation remain largely elusive. Here, we report the identification of a muscle-specific long non-coding RNA, ChRO1, involved in constitutive heterochromatin reorganization. ChRO1 is induced during terminal differentiation of myoblasts, and is specifically localized to the chromocenters in myotubes. ChRO1 is required for efficient cell differentiation, with global impacts on gene expression. It influences DNA methylation and chromatin compaction at peri/centromeric regions. Inhibition of ChRO1 leads to defects in the spatial fusion of chromocenters, and mislocalization of H4K20 trimethylation, Suv420H2, HP1, MeCP2 and cohesin. In particular, ChRO1 specifically associates with ATRX/DAXX/H3.3 complex at chromocenters to promote H3.3 incorporation and transcriptional induction of satellite repeats, which is essential for chromocenter clustering. Thus, our results unveil a mechanism involving a lncRNA that plays a role in large-scale heterochromatin reorganization and cell differentiation.


Assuntos
Proteínas de Transporte/genética , Heterocromatina/química , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Desenvolvimento Muscular/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Proteína Nuclear Ligada ao X/genética , Animais , Sistemas CRISPR-Cas , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Correpressoras , Feminino , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Células NIH 3T3 , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Proteína Nuclear Ligada ao X/metabolismo , Coesinas
6.
Nucleic Acids Res ; 41(10): 5199-209, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23563152

RESUMO

The mammalian genome encodes multiple variants of histone H3 including H3.1/H3.2 and H3.3. In contrast to H3.1/H3.2, H3.3 is enriched in the actively transcribed euchromatin and the telomeric heterochromatins. However, the mechanism for H3.3 to incorporate into the different domains of chromatin is not known. Here, taking the advantage of well-defined transcription analysis system of yeast, we attempted to understand the molecular mechanism of selective deposition of human H3.3 into actively transcribed genes. We show that there are systemic H3 substrate-selection mechanisms operating even in yeasts, which encode a single type of H3. Yeast HIR complex mediated H3-specific recognition specificity for deposition of H3.3 in the transcribed genes. A critical component of this process was the H3 A-IG code composed of amino acids 87, 89 and 90. The preference toward H3.3 was completely lost when HIR subunits were absent and partially suppressed by human HIRA. Asf1 allows the influx of H3, regardless of H3 type. We propose that H3.3 is introduced into the active euchromatin by targeting the recycling pathway that is mediated by HIRA (or HIR), and this H3-selection mechanism is highly conserved through the evolution. These results also uncover an unexpected role of RI chaperones in evolution of variant H3s.


Assuntos
Evolução Biológica , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/química , Humanos , Mutação , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Leveduras/genética , Leveduras/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(1): 85-90, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173268

RESUMO

In mammals, the canonical histone H3 and the variant H3.3 are assembled into chromatin through replication-coupled and replication-independent (RI) histone deposition pathways, respectively, to play distinct roles in chromatin function. H3.3 is largely associated with transcriptionally active regions via the activity of RI histone chaperone, HIRA. However, the precise role of the RI pathway and HIRA in active transcription and the mechanisms by which H3.3 affects gene activity are not known. In this study, we show that HIRA is an essential factor for muscle development by establishing MyoD activation in myotubes. HIRA and Asf1a, but not CHD1 or Asf1b, mediate H3.3 incorporation in the promoter and the critical upstream regulatory regions of the MyoD gene. HIRA and H3.3 are required for epigenetic transition into the more permissive chromatin structure for polymerase II recruitment to the promoter, regardless of transcription-associated covalent modification of histones. Our results suggest distinct epigenetic management of the master regulator with RI pathway components for cellular differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Desenvolvimento Muscular/fisiologia , Proteína MyoD/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Primers do DNA/genética , Imunofluorescência , Immunoblotting , Imunoprecipitação , Camundongos , Análise em Microsséries , Interferência de RNA , RNA Nuclear Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional/genética , Transfecção
8.
Br J Pharmacol ; 181(15): 2528-2544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38600628

RESUMO

BACKGROUND AND PURPOSE: The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH: The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS: TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 µM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS: This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.


Assuntos
Osteoartrite , Fatores de Transcrição , Animais , Masculino , Camundongos , Proteínas que Contêm Bromodomínio , Progressão da Doença , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
9.
Nanotechnology ; 24(6): 065703, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23340217

RESUMO

This study examines the effects of doping ZnO nanowires (NWs) with Sn on the growth morphology and electrical properties. ZnO NWs with various Sn contents (1-3 at.%) were synthesized using the vapor-liquid-solid method. Scanning electron and transmission electron microscopy analyses showed that all of the Sn-doped NWs grew in a bamboo-like morphology, in which stacking faults enriched with Sn were periodically inserted. We fabricated a hybrid film of InZnO sol-gel and Sn-doped ZnO NW networks to characterize the effects of Sn doping on the electrical properties of the NWs. With increasing doping density, the carrier concentration increases significantly while the mobility decreases greatly. The resistivity remains scattered, which suggests that Sn doping in ZnO is not an effective method for the enhancement of conductivity, since Sn does not readily incorporate into the ZnO structure.

10.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979680

RESUMO

Owing to the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the capacity of testing systems based on the gold standard real-time reverse transcription-polymerase chain reaction (rRT-PCR) is limited. Rapid antigen tests (RATs) can substantially contribute to the prevention of community transmission, but their further assessment is required. Here, using 1503 nasopharyngeal swabs, we compared the diagnostic performance of four RAT kits (Abbott Panbio™ COVID-19 Ag Rapid Test, SD Biosensor Standard™ Q COVID-19 Ag Test, Humasis COVID-19 Ag Test, and SG Medical Acrosis COVID-19 Ag Test) to the cycle threshold (Ct) values obtained from rRT-PCR. The precision values, area under the curve values, SARS-CoV-2 variant detection ability, and non-SARS-CoV-2 specificity of all four kits were similar. An assay using the Acrosis kit had a significantly better positive detection rate with a higher recall value and cut-off value than that using the other three RAT kits. During the current COVID-19 pandemic, the Acrosis kit is an effective tool to prevent the spread of SARS-CoV-2 in communities.

11.
Aging (Albany NY) ; 15(13): 5966-5989, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437248

RESUMO

A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Reprogramação Celular/genética , Senescência Celular/genética , Envelhecimento/genética , Metilação de DNA , Mamíferos
12.
Biochem Biophys Res Commun ; 423(4): 726-32, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22705305

RESUMO

Cellular differentiation is a process in which the cells gain a more specialized shape, metabolism, and function. These cellular changes are accompanied by dynamic changes in gene expression programs. In most cases, DNA methylation, histone modification, and variant histones drive the epigenetic transition that reprograms the gene expression. Histone chaperones, HIRA and Asf1a, have a role for cellular differentiation by deposition of one of variant histones, H3.3, during myogenesis of murine C2C12 cells. In this study, we accessed the roles of histone chaperones and histone H3.3 in osteoblastic conversion of C2C12 myoblasts and compared their roles with those for myogenic differentiation. The unbiased analysis of the expression pattern of histone chaperones and variant histones proposed their uncommon contribution to each pathway. HIRA and Asf1a decreased to ∼50% and further diminished during differentiation into osteoblasts, while they were maintained during differentiation into myotubes. HIRA, Asf1a, and H3.3 were indispensable for expression of cell type-specific genes during conversion into osteoblasts or myotubes. RNA interference analysis indicated that histone chaperones and H3.3 were required for early steps of osteoblastic differentiation. Our results suggest that histone chaperones and variant histones might be differentially required for the distinct phases of differentiation pathway.


Assuntos
Diferenciação Celular/fisiologia , Chaperonas de Histonas/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Osteoblastos/citologia , Fosfatase Alcalina/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Chaperonas de Histonas/genética , Histonas/genética , Histonas/fisiologia , Camundongos , Chaperonas Moleculares , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/genética , Mioblastos/metabolismo , Miogenina/genética , Osteoblastos/metabolismo , Osteocalcina/genética , Osteogênese/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
13.
Int J Anal Chem ; 2022: 5020255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992557

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is still rapidly spreading as of March 2022. An accurate and rapid molecular diagnosis is essential to determine the exact number of confirmed cases. Currently, the viral transport medium (VTM) required for testing is in short supply due to a sharp increase in the laboratory tests performed, and alternative VTMs are needed to alleviate the shortage. Guanidine thiocyanate-based media reportedly inactivate SARS-CoV-2 and are compatible with quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays, but the compatibility and the viral detection capacity have not been fully validated. To evaluate the guanidine thiocyanate-based Gene Transport Medium (GeneTM) as an alternative VTM, we prepared 39 SARS-CoV-2-positive and 7 SARS-CoV-2-negative samples in GeneTM, eNAT™, and phosphate-buffered saline (PBS). The cycle threshold (Ct) values of three SARS-CoV-2 targets (the S, RdRP, and N genes) were analyzed using RT-qPCR testing. The comparison of Ct values from the positive samples showed a high correlation (R 2= 0.95-0.96) between GeneTM and eNAT™, indicating a comparable viral detection capacity. The delta Ct values of the SARS-CoV-2 genes in each transport medium were maintained for 14 days at cold (4°C) or room (25°C) temperatures, suggesting viral samples were stably preserved in the transport media for 14 days. Together, GeneTM is a potential alternative VTM with comparable RT-qPCR performance and stability to those of standard media.

14.
Diagnostics (Basel) ; 12(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291968

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic human coronavirus and is rapidly transmitted by infected individuals regardless of their symptoms. During the COVID-19 pandemic, owing to the dearth of skilled healthcare workers (HCWs) to collect samples for early diagnosis, self-collection emerged as a viable alternative. To evaluate the reliability of self-collection, we compared the virus detection rate using 3990 self-collected swabs and HCW-collected swabs, procured from the same individuals and collected immediately after the self-collection. The results of multiplex reverse-transcription quantitative polymerase chain reaction revealed that the viral load in the HCW-collected swabs was marginally (18.4-28.8 times) higher than that in self-collected swabs. Self-collection showed no significant difference in sensitivity and specificity from HCW-collection (κ = 0.87, McNemar's test; p = 0.19), indicating a comparable performance. These findings suggest that self-collected swabs are acceptable substitutes for HCW-collected swabs, and that their use improved the specimen screening efficiency and reduced the risk of SARS-CoV-2 infection among HCWs during and after the COVID-19 pandemic.

15.
Life (Basel) ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35054463

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is highly contagious and causes coronavirus disease 2019 (COVID-19). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most accurate and reliable molecular assay to detect active SARS-CoV-2 infection. However, a rapid increase in test subjects has created a global bottleneck in testing capacity. Given that efficient nucleic acid extraction greatly affects reliable and accurate testing results, we compared three extraction platforms: MagNA Pure 96 DNA and Viral NA Small Volume kit on MagNA Pure 96 (Roche, Basel, Switzerland), careGENETM Viral/Pathogen HiFi Nucleic Acid Isolation kit (WELLS BIO Inc., Seoul, Korea) on KingFisher Flex (Thermo Fisher Scientific, Rocklin, CA, USA), and SGRespiTM Pure kit (Seegene Inc., Seoul, Korea) on Maelstrom 9600 (Taiwan Advanced Nanotech Inc., Taoyuan, Taiwan). RNA was extracted from 245 residual respiratory specimens from the different types of samples (i.e., NPS, sputum, and saliva) using three different kits. The 95% limits of detection of median tissue culture infectious dose per milliliter (TCID50/mL) for the MagNA Pure 96, KingFisher Flex, and Maelstrom 9600 were 0.37-3.15 × 101, 0.41-3.62 × 101, and 0.33-1.98 × 101, respectively. The KingFisher Flex platform exhibited 99.2% sensitivity and 100% specificity, whereas Maelstrom 9600 exhibited 98.3-100% sensitivity and 100% specificity. Bland-Altman analysis revealed a 95.2% concordance between MagNA Pure 96 and KingFisher Flex and 95.4% concordance between MagNA Pure 96 and Maelstrom 9600, indicating that all three platforms provided statistically reliable results. This suggests that two modifying platforms, KingFisher Flex and Maelstrom 9600, are accurate and scalable extraction platforms for large-scale SARS-CoV-2 clinical detection and could help the management of COVID-19 patients.

16.
Biochem Biophys Res Commun ; 407(3): 541-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21414300

RESUMO

Histone chaperones function in histone transfer and regulate the nucleosome occupancy and the activity of genes. HIRA is a replication-independent (RI) histone chaperone that is linked to transcription and various developmental processes. Here, we show that HIRA interacts with Mef2 and contributes to the activation of Mef2-target genes during muscle differentiation. Asf1 cooperated with HIRA and was indispensable for Mef2-dependent transcription. The HIRA R460A mutant, which is defective in Asf1 binding, lost the transcriptional co-activation. In addition, the role of Cabin1, previously reported as a Mef2 repressor and as one of the components of the HIRA-containing complex, was delineated in Mef2/HIRA-mediated transcription. Cabin1 associated with the C-terminus of HIRA via its N-terminal domain and suppressed Mef2/HIRA-mediated transcription. Expression of Cabin1 was dramatically reduced upon myoblast differentiation, which may allow Mef2 and HIRA/Asf1 to resume their transcriptional activity. HIRA led to more permeable chromatin structure marked by active histone modifications around the myogenin promoter. Our results suggest that histone chaperone complex components contribute to the regulation of Mef2 target genes for muscle differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Chaperonas de Histonas/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona , Chaperonas de Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição MEF2 , Camundongos , Proteína MyoD/genética , Fatores de Regulação Miogênica/genética , Miogenina/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
17.
Diagnostics (Basel) ; 11(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199257

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc., Seoul, South Korea) kit with those of four commercially available RV detection kits. Upon testing five target viral strains (SARS-CoV-2, FluA, FluB, RSV A, and RSV B), the analytical performance of SC2FabR was similar to that of the other kits, with no significant difference (p ≥ 0.78) in z-scores. The efficiency of SC2FabR (E-value, 81-104%) enabled reliable SARS-CoV-2 and seasonal RV detection in 888 nasopharyngeal swab specimens processed using a fully automated nucleic acid extraction platform. Bland-Altman analyses revealed an agreement value of 95.4% (SD ± 1.96) for the kits, indicating statistically similar results for all five. In conclusion, SC2FabR is a rapid and accurate diagnostic tool for both SARS-CoV-2 and seasonal RV detection, allowing for high-throughput RV analysis with efficiency comparable to that of commercially available kits. This can be used to help manage respiratory infections in patients during and after the coronavirus disease 2019 pandemic.

18.
PLoS One ; 16(6): e0253402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138947

RESUMO

Classification of clinical symptoms and diagnostic microbiology are essential to effectively employ antimicrobial therapy for lower respiratory tract infections (LRTIs) in a timely manner. Empirical antibiotic treatment without microbial identification hinders the selective use of narrow-spectrum antibiotics and effective patient treatment. Thus, the development of rapid and accurate diagnostic procedures that can be readily adopted by the clinic is necessary to minimize non-essential or excessive use of antibiotics and accelerate patient recovery from LRTI-induced damage. We developed and validated a multiplex real-time polymerase chain reaction (mRT-PCR) assay with good analytical performance and high specificity to simultaneously detect four bacterial pathogens causing pneumonia: Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis. The analytical performance of mRT-PCR against target pathogens was evaluated by the limit of detection (LOD), specificity, and repeatability. Two hundred and ten clinical specimens from pneumonia patients were processed using an automatic nucleic acid extraction system for the "respiratory bacteria four" (RB4) mRT-PCR assay, and the results were directly compared to references from bacterial culture and/or Sanger sequencing. The RB4 mRT-PCR assay detected all target pathogens from sputum specimens with a coefficient of variation ranging from 0.29 to 1.71 and conservative LOD of DNA corresponding to 5 × 102 copies/reaction. The concordance of the assay with reference-positive specimens was 100%, and additional bacterial infections were detected from reference-negative specimens. Overall, the RB4 mRT-PCR assay showed a more rapid turnaround time and higher performance that those of reference assays. The RB4 mRT-PCR assay is a high-throughput and reliable tool that assists decision-making assessment and outperforms other standard methods. This tool supports patient management by considerably reducing the inappropriate use of antibiotics.


Assuntos
Klebsiella pneumoniae/isolamento & purificação , Moraxella catarrhalis/isolamento & purificação , Pneumonia/diagnóstico , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Pneumonia/microbiologia , Sensibilidade e Especificidade
19.
Nanoscale ; 8(17): 9193-200, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27075554

RESUMO

We investigated, for the first time, the photoresponse characteristics of solution-synthesized MoS2 phototransistors. The photoresponse of the solution-synthesized MoS2 phototransistor was solely determined by the interactions of the photogenerated charge carriers with the surface adsorbates and the interface trap sites. Instead of contributing to the photocurrent, the illumination-generated electron-hole pairs were captured in the trap sites (surface and interface sites) due to the low carrier mobility of the solution-synthesized MoS2. The photogenerated holes discharged ions (oxygen and/or water) adsorbed onto the MoS2 surface and were released as neutral molecules. At the same time, the photogenerated electrons filled the traps present at the interface with the underlying substrate during their transport to the drain electrode. The filled trap sites significantly relieved the band bending near the surface region, which resulted in both a negative shift in the turn-on voltage and an increase in the photocurrent. The time-dependent dynamics of the solution-synthesized MoS2 phototransistors revealed persistent photoconductance due to the trapped electrons at the interface. The photoconductance was recovered by applying a short positive gate pulse. The instantaneous discharge of the trapped electrons dramatically reduced the relaxation time to less than 20 ms. This study provides an important clue to understanding the photoresponses of various optoelectronic devices prepared using solution-synthesized two-dimensional nanomaterials.

20.
Sci Rep ; 6: 20907, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861833

RESUMO

The downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated. The nucleation layer provided by the Hf seed layer (which transforms to the HfO2 layer during ALD) resulted in the uniform and conformal deposition of the HfO2 film without damaging the graphene, which is suitable for downscaling the CET. After verifying the feasibility of scaling down the HfO2 thickness to achieve a CET of ~1.5 nm from an array of top-gated metal-oxide-graphene field-effect transistors, we fabricated graphene heterojunction tunnelling transistors with a record-low subthreshold swing value of <60 mV/dec on an 8" glass wafer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA