Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278337

RESUMO

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Assuntos
Astacoidea , Salvia miltiorrhiza , Animais , Astacoidea/genética , Hemócitos , Hepatopâncreas , Função da Barreira Intestinal , Fagocitose , Polissacarídeos/farmacologia
2.
Clin Exp Hypertens ; 45(1): 2284658, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010958

RESUMO

Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.


Assuntos
Hipertensão , MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Proliferação de Células/genética , Hexoquinase/metabolismo , Hipertensão/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Remodelação Vascular/genética
3.
Front Nutr ; 11: 1355116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414486

RESUMO

This study employed mixed bacterial strains to ferment seabuckthorn seed meal into peptides, and conducted a comprehensive evaluation of the growth adaptive conditions, molecular weight distribution, volatile compounds, and in vitro hypoglycemic activity required for fermentation. Results showed that when the amount of maltose was 1.1% and MgSO4·7H2O was added at 0.15 g/L, the peptide yield reached 43.85% with a mixed fermentation of Lactobacillus fermentum, Bacillus subtilis, Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus acidophilus. Components with a molecular weight below 1 kDa were found to be more effective in inhibiting the activity of α-amylase and α-glucosidase, with the identified sequence being FYLPKM. Finally, SPME/GC-MS results showed that 86 volatile components were detected during the fermentation of seabuckthorn seed meal, including 22 alcohols, 9 acids, 7 ketones, 14 alkanes, 20 esters, and 14 other compounds. With prolonged fermentation time, the content of acids and esters increased significantly.

4.
Anticancer Drugs ; 24(2): 172-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22990130

RESUMO

A functionalized poly(amidoamine) (PAMAM) nanocarrier was designed and prepared to deliver anticancer drugs. The nanocarrier is a copolymer with a core-shell structure with 3.0 G PAMAM as the core and sequentially conjugated poly(2-(N,N-diethylamino)ethyl methacrylate) (pDEA) and methoxy-poly(ethylene glycol) 2000 (mPEG) as the shell. The copolymer, PAMAM-pDEA-mPEG, was synthesized using atom transfer radical polymerization and click chemistry. The PAMAM core loaded drugs. pDEA had pH-sensitive properties, showing hydrophobicity in neutral environments and hydrophilicity in weakly acidic environments because of the presence of tertiary amines. Therefore, pDEA was a functional layer coating drugs in neutral environments and releasing drugs in acidic environments. The outer mPEG layer allowed the nanocarrier to circulate in the blood for a long period of time and improved the stability of the nanocarriers. The anticancer drug 5-fluorouracil (5-FU) was entrapped in the nanocarrier at high levels by changing the pH from 4.0 to 8.0. The drug release was also highly pH responsive, and the release rate was much higher at pH 6.5 than at pH 7.4, which favored drug release in the weakly acidic tumor environment. The blank nanocarrier was not toxic to cells or animals. The 5-FU-loaded nanocarrier exerted enhanced anticancer effects on tumor-bearing mice relative to 5-FU alone. PAMAM-pDEA-mPEG is a promising nanocarrier for the delivery of anticancer drugs.


Assuntos
Antimetabólitos Antineoplásicos/química , Portadores de Fármacos/química , Fluoruracila/administração & dosagem , Fluoruracila/química , Nanopartículas/química , Poliaminas/química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Feminino , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Camundongos , Nanopartículas/administração & dosagem , Nylons , Poliaminas/administração & dosagem , Polietilenoglicóis/química , Polímeros/química
5.
Anal Sci ; 39(1): 13-22, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306109

RESUMO

Sialic acid (SA), known as N-acetyl neuraminic acid, is a natural 9-carbomonosaccharide derivative. SA has been widely applied in the early diagnosis of diseases as therapeutic target. However, the abundance of SA is very low in biological samples, which is usually interfered by the similar molecules coexisting at high abundance. Combining the advantages of high selectivity and specificity of molecularly imprinted technology, high specific surface area of mesoporous materials and excellent optical properties of quantum dots, we chose Mn-doped ZnS quantum dots as signal elements, and sialic acid as the template molecule. KH-4-MAPB with recognition ability to SA was synthesized by one-step hydrothermal method using thiolene click reaction as functional monomer. Based on the principle of boron affinity, molecularly imprinted polymers with highly ordered mesoporous structure were prepared, and the structure and fluorescence properties of fluorescent molecularly imprinted polymers were studied. FT-IR, XRD, TEM and nitrogen adsorption-desorption experiments were used to characterize the structure and morphology of the molecularly imprinted polymers. The results showed that the prepared molecularly imprinted polymers had highly ordered mesoporous structure and a large number of imprinted holes, which ensured the specific selectivity of the molecularly imprinted polymers. The fluorescence properties of MIMPs were characterized and analyzed by fluorescence spectra, equilibrium adsorption kinetics experiments were conducted and imprinting properties were recorded under different pH. The above experimental results showed that the fluorescence quenching was successfully achieved when the template molecule SA was captured by the molecularly imprinted polymer. When the concentration of SA was 1.25-100 × 10-2 g/L, the fluorescence quenching degree of MIMPs showed a fine linear relationship with SA. The correlation coefficient was 0.9946, and the detection equation was F0/F - 1 = 0.0215 [CSA] + 0.0241. MIMPs had a high recognition ability for SA, and the imprinting factor was 2.44. As a fluorescent sensor for SA, the response time of MIMPs was 20 min. When the buffer solution pH was 7, the imprinting factor was the largest. Under the best conditions, MIMPs revealed good selectivity and specificity for the fluorescence recognition of SA. MIMPS were also applied to the analysis of SA in real human serum samples with satisfactory results.


Assuntos
Impressão Molecular , Pontos Quânticos , Humanos , Polímeros/química , Pontos Quânticos/química , Boro , Polímeros Molecularmente Impressos , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido N-Acetilneuramínico , Impressão Molecular/métodos , Manganês , Espectrometria de Fluorescência/métodos , Corantes
6.
Front Nutr ; 10: 1120748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742432

RESUMO

Sea buckthorn (Hippophae rhamnoides L.) is an edible and medicinal plant species. However, due to its sour taste, it is not readily accepted by consumers. To overcome this, fermentation can be used to change its flavor profile. In this study, we used response surface methodology (RSM) to determine the best process for producing fermented sea buckthorn juice (FSBJ) using probiotics. The biological enzyme activity and total flavonoid content (TFC) of sea buckthorn juice (SBJ) increased after fermentation. When the number of bacteria inoculated was 4.08 × 106 CFU/mL and the inoculation ratio was 30% Z. mobilis, 5% L. casei, 13.75% L. plantarum, 31.25% P. acidilactici, 12.5% L. animalis, and 7.5% P. pentosaceus, the amount of sugar was 2.98% (w/v) after 20 h of fermentation at 37°C, and the superoxide dismutase (SOD) activity reached 725.44 U/mL, and the TFC reached 2.38 mg/mL. FSBJ demonstrated strong antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea. Then, to investigate the antioxidant capacity of FSBJ, we used H2O2 to induce oxidative stress in C2C12 cells and assessed the protection conferred by FSBJ to damaged cells. It was discovered that after 24 h of treatment with FSBJ, not only was there an increase in the activities of intracellular SOD and glutathione peroxidase (GSH-Px), but also a reduction in reactive oxygen species (ROS) content, catalase (CAT) activity, and malondialdehyde (MDA) content. This research lays the theoretical groundwork and provides reference materials for the improved fermentation of sea buckthorn and demonstrates its resulting antioxidant effect.

7.
Int J Nanomedicine ; 18: 5733-5748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849640

RESUMO

Introduction: Quercetin has an ideal therapeutic effect on islet function improvement in type 2 diabetes mellitus (T2DM). However, the therapeutic benefit of quercetin is hindered by its poor bioavailability and limited concentration in pancreatic islets. In this study, superparamagnetic iron oxide nanoparticle (SPION)-modified exosomes were prepared to load quercetin, hoping to endow quercetin with enhanced water solubility and active targeting capacity with the help of magnetic force (MF). Methods: Transferrin-modified SPIONs (Tf-SPIONs) were synthesized by exploiting N-hydroxysuccinimidyl (NHS) conjugation chemistry, and quercetin-loaded exosomes (Qu-exosomes) were acquired by electroporation. Tf-SPION-modified quercetin-loaded exosomes (Qu-exosome-SPIONs) were generated by the self-assembly of transferrin (Tf) and the transferrin receptor (TfR). The solubility of quercetin was determined by high-performance liquid chromatography (HPLC) analysis. The pancreatic islet targeting capacity and insulin secretagogue and antiapoptotic activities of Qu-exosome-SPIONs/MF were evaluated both in vitro and in vivo. Results: The Qu-exosome-SPIONs were well constructed and harvested by magnetic separation with a uniform size and shape in a diameter of approximately 86.2 nm. The water solubility of quercetin increased 1.97-fold when loaded into the SPION-modified exosomes. The application of SPIONs/MF endowed the Qu-exosomes with favorable targeting capacity. In vitro studies showed that Qu-exosome-SPIONs/MF more effectively inhibited or attenuated ß cell apoptosis and promoted insulin secretion in response to elevated glucose (GLC) compared with quercetin or Qu-exosome-SPIONs. In vivo studies demonstrated that Qu-exosome-SPIONs/MF displayed an ideal pancreatic islet targeting capacity, thereby leading to the restoration of islet function. Conclusion: The Qu-exosome-SPIONs/MF nano-delivery system significantly enhanced the quercetin concentration in pancreatic islets and thereby improved pancreatic islet protection.


Assuntos
Diabetes Mellitus Tipo 2 , Exossomos , Células Secretoras de Insulina , Humanos , Quercetina/farmacologia , Quercetina/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Exossomos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Transferrinas/análise , Transferrinas/metabolismo , Água
8.
J Food Biochem ; 46(2): e14078, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35014054

RESUMO

Tanshinone IIA (TAN) is widely employed for handling cardiovascular disorders. The current study explored the potential role of miRs in the antifibrotic effect of TAN on heart. Fibrotic features were induced in cardiac fibroblasts (CFs) and in rat hearts, and then handled with TAN. MicroRNAs (miRs) responding to TAN were determined using a microarray assay. The selected miR was modulated to verify its role in antifibrotic effects of TAN. TAN suppressed the viability and the production of α-SMA in CFs, which was associated with 101 miR being upregulated and 223 miR being downregulated. MiR-618 was selected as the potential target of TAN. Ang II inhibited miR-618 level and resulted in the upregulation of pro-fibrosis factors, which was reversed by TAN. The antifibrotic effect of TAN was weakened by miR-618 inhibition. TAN inhibits hypertrophy and collagen deposition in heart tissues, which is associated with the increased level of miR-618. PRACTICAL APPLICATIONS: The findings outlined in the current study show that the antifibrotic function of TAN is closely related to the function of miRs: the induction of miR-618 is indispensable for the function of TAN against the fibrotic process after heart injury, which will promote the application of TAN as an adjuvant therapy for improving heart function.


Assuntos
Abietanos/farmacologia , Fibroblastos/efeitos dos fármacos , Coração/efeitos dos fármacos , MicroRNAs , Salvia miltiorrhiza , Animais , Fibrose/tratamento farmacológico , MicroRNAs/genética , Miocárdio , Ratos
9.
Front Nutr ; 9: 988628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185665

RESUMO

Chickpeas are the third largest bean in the world and are rich in protein. In this study, chickpea peptides were prepared by the enzyme-bacteria synergy method. Taking the peptide yield as the index, we first screened 8 strains suitable for the fermentation of chickpea peptides from 16 strains, carried out sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then screened 4 strains with the best decomposition effect of chickpea protein. The molecular weight, amino acid content, and α-glucosidase inhibitory activity of the chickpea peptides fermented by these four strains were detected. Finally, the strains with the best α-glucosidase inhibitory activity were obtained, and the inhibitory activities of the different molecular weight components of the chickpea peptides fermented by the strains with the best α-glucosidase inhibitory were detected. It was found that Bifidobacterium species had the best fermentation effect, and the highest peptide yield was 52.99 ± 0.88%. Lactobacillus thermophilus had the worst fermentation effect, and the highest peptide yield was 43.22 ± 0.47%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that Bifidobacterium species, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus paracasei have a better effect on the decomposition of chickpea protein in the fermentation process, and the molecular weight of their fermented peptides is basically below 20 KDa. Among the four strains, the α-glycosidase inhibition of chickpea peptide fermented by Lactobacillus acidophilus was the best, which was 58.22 ± 1.10% when the peptide concentration was 5.0 mg/ml. In chickpea peptide fermented by Lactobacillus acidophilus, the influence of molecular weight on the inhibitory activity is not obvious when the molecular weight is <10 kD, and the molecular weight range of the best inhibitory effect is 3-10 kD, and the inhibitory rate of α-glucosidase is 37 ± 1.32% at 2.0 mg/ml. This study provides a theoretical basis for the study of a new preparation method for chickpea peptide and its hypoglycemic effect.

10.
Front Nutr ; 9: 1119042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36742006

RESUMO

Quinoa seeds are a food resource rich in protein, vitamins, minerals, and other functional components such as polyphenols, polysaccharides, and saponins. The seeds have become favored by modern consumers due to being gluten-free and featuring a high protein content. This study focused on the preparation of quinoa peptides by short-time enzymatic-assisted fermentation. Quinoa flour (QF) was mixed with water in a certain ratio before being enzymatically digested with 0.5% amylase and 0.1% lipase for 6 h. Then, 16 bacterial taxa were used for fermentation, respectively. The peptide content in the resulting fermentation broths were determined by the biuret method. The dominant taxon was then identified and the peptide content, amino acid distribution, and molecular weight distribution of the prepared quinoa peptides were analyzed. Further, the temperature, pH, metal ions, organic solvents, ion concentration, and anti-enzyme stability of the quinoa anti-hypertensive peptides of different molecular weights after fermentation with the dominant taxon were investigated. Finally, the inhibitory activity of fermented quinoa peptides on bacteria was studied. The results show that the peptide content of the fermentation broth reached 58.72 ± 1.3% at 40 h of fermentation with Lactobacillus paracasei and the molecular weights of the hydrolyzed quinoa peptides were mainly distributed below 2 kDa by polyacrylamide gel. The Angiotensin Converting Enzyme (ACE) inhibition and peptide retention of the 0-3 kDa quinoa peptides were screened to be high and stable. At the same time, the inhibitory activity of quinoa peptide after fermentation on E. coli was obvious. This study provides a theoretical basis for further research on quinoa peptide and its application in industrial production, and also lays a foundation for the later application of polypeptides in new food and chemical products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA