Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(3): 787-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38206080

RESUMO

Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.


Assuntos
Temperatura Baixa , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Metabolismo dos Carboidratos/genética
2.
Plant Physiol ; 195(4): 2772-2786, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38728429

RESUMO

In fleshy fruit, sugars and acids are central components of fruit flavor and quality. To date, the mechanisms underlying transcriptional regulation of sugar and acid during fruit development remain largely unknown. Here, we combined ATAC-seq with RNA-seq to investigate the genome-wide chromatin accessibility and to identify putative transcription factors related to sugar and acid accumulation during apple (Malus domestica) fruit development. By integrating the differentially accessible regions and differentially expressed genes, we generated a global data set of promoter-accessibility and expression-increased genes. Using this strategy, we constructed a transcriptional regulatory network enabling screening for key transcription factors and target genes involved in sugar and acid accumulation. Among these transcription factors, 5 fruit-specific DNA binding with one finger genes were selected to confirm their regulatory effects, and our results showed that they could affect sugar or acid concentration by regulating the expression of sugar or acid metabolism-related genes in apple fruits. Our transcriptional regulatory network provides a suitable platform to identify candidate genes that control sugar and acid accumulation. Meanwhile, our data set will aid in analyzing other characteristics of apple fruit that have not been illuminated previously. Overall, these findings support a better understanding of the regulatory dynamics during apple fruit development and lay a foundation for quality improvement of apple.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malus , Açúcares , Malus/genética , Malus/metabolismo , Malus/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Açúcares/metabolismo , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácidos/metabolismo , Metabolismo dos Carboidratos/genética
3.
Plant Physiol ; 196(1): 432-445, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38788771

RESUMO

Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase , Malatos , Malus , Proteínas de Plantas , Regiões Promotoras Genéticas , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Mutagênese Insercional/genética , Plantas Geneticamente Modificadas , Genes de Plantas
4.
Plant J ; 109(5): 1183-1198, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888978

RESUMO

Fructose (Fru) content is a key determinant of fruit sweetness and quality. An F1 hybrid population of the apple cultivars 'Honeycrisp' × 'Qinguan' was used to investigate the quantitative trait locus (QTL) regions and genes controlling Fru content in fruit. A stable QTL on linkage group (LG) 01 in 'Honeycrisp' was detected on the single nucleotide polymorphism (SNP) genetic linkage maps. In this region, a sorbitol dehydrogenase (SDH) gene, MdSDH2, was detected and showed promoter variations and differential expression patterns between 'Honeycrisp' and 'Qinguan' fruits as well as their hybrids. A SNP variant (A/G) in the MdSDH2 promoter region (SDH2p-491) affected the binding ability of the transcription factor MdABI3, which can affect the expression of MdSDH2. Promoter sequences with an A nucleotide at SDH2p-491 had stronger binding affinity for MdABI3 than those with a G. Among 27 domesticated apple cultivars and wild relatives, this SNP (A/G) was associated with Fru content. Our results indicate that MdSDH2 can alter Fru content as the major regulatory gene and that ABA signaling might be involved in Fru content accumulation in apple fruit.


Assuntos
Malus , Frutose/metabolismo , Frutas/metabolismo , L-Iditol 2-Desidrogenase/genética , Malus/genética , Malus/metabolismo , Regiões Promotoras Genéticas/genética , Sorbitol/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Hortic Res ; 9: uhac194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338852

RESUMO

The types and proportions of soluble sugar and organic acid in fruit significantly affect flavor quality. However, there are few reports on the crosstalk regulation between metabolism of organic acid and sugar in fruit. Here, we found that the overexpression of cytoplasmic malate dehydrogenase genes (MdcyMDHs) not only increased the malate content but also increased the sucrose concentration in transgenic apple calli and mature fruit. Enzyme activity assays indicated that the overexpression of MdcyMDH1 and MdcyMDH5 enhanced sucrose phosphate synthase (SPS) activity in transgenic materials. RNA-seq and expression analysis showed that the expression levels of SPS genes were up-regulated in MdcyMDH1-overexpressed apple fruit and MdcyMDH5-overexpressed apple calli. Further study showed that the inhibition of MdSPSB2 or MdSPSC2 expression in MdcyMDH1 transgenic fruit could reduce or eliminate, respectively, the positive effect of MdcyMDH1 on sucrose accumulation. Moreover, some starch cleavage-related genes (MdBAM6.1/6.2, MdBMY8.1/8.2, MdISA1) and the key gluconeogenesis-related phosphoenolpyruvate carboxykinase MdPEPCK1 gene were significantly up-regulated in the transcriptome differentially expressed genes of mature fruit overexpressing MdcyMDH1. These results indicate that alteration of malate metabolism mediated by MdcyMDH might regulate the expression of MdSPSs and SPS activity via affecting starch metabolism or gluconeogenesis, and thus accelerate sucrose synthesis and accumulation in fruit.

6.
Biotechnol Biofuels ; 14(1): 137, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130710

RESUMO

BACKGROUND: Cellulose is not only a common component in vascular plants, but also has great economic benefits for paper, wood, and industrial products. In addition, its biosynthesis is highly regulated by carbohydrate metabolism and allocation in plant. MdFRK2, which encodes a key fructokinase (FRK) in apple, showed especially high affinity to fructose and regulated carbohydrate metabolism. RESULTS: It was observed that overexpression of MdFRK2 in apple decreased sucrose (Suc) and fructose (Fru) with augmented FRK activity in stems, and caused the alterations of many phenotypic traits that include increased cellulose content and an increase in thickness of the phloem region. To further investigate the involved mechanisms, we generated FRK2-OE poplar lines OE#1, OE#4 and OE#9 and discovered (1) that overexpression of MdFRK2 resulted in the huge increased cellulose level by shifting the fructose 6-phosphate or glucose 6-phsophate towards UDPG formation, (2) a direct metabolic pathway for the biosynthesis of cellulose is that increased cleavage of Suc into UDP-glucose (UDPG) for cellulose synthesis via the increased sucrose synthase (SUSY) activity and transcript levels of PtrSUSY1, (3) that the increased FRK activity increases the sink strength overall so there is more carbohydrate available to fuel increased cambial activity and that resulted in more secondary phloem. These results demonstrated that MdFRK2 overexpression would significantly changes the photosynthetic carbon flux from sucrose and hexose to UDPG for increased cellulose synthesis. CONCLUSIONS: The present data indicated that MdFRK2 overexpression in apple and poplar changes the photosynthetic carbon flux from sucrose and hexose to UDPG for stem cellulose synthesis. A strategy is proposed to increase cellulose production by regulating sugar metabolism as a whole.

7.
J Agric Food Chem ; 69(2): 824-835, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33410682

RESUMO

Understanding the metabolic modulation of major quality traits during ripening is critical for fruit quality improvement in kiwifruits. Here, integrated proteomic and metabolomic profiling was undertaken to comprehensively examine the dynamics of kiwifruit ripening. This data set presents a global view of the critical pathways involved in fruit ripening, and the contributions of key events to the regulation of kiwifruit ripening and softening, amino acid metabolism, balance in sugar accumulation and organic acid metabolism, glycolysis, and tricarboxylic acid (TCA) pathways were discussed. We suggested key enzymes for starch synthesis and degradation, including AGPase, SS, and SBE, especially for BMY, which was considered a key enzyme for starch degradation. In addition, our analysis implicated the key enzymes ACO4 and ACS9 in ethylene synthesis and the aspartate aminotransferase ASP3 in the conversion of amino acids. These results provide new insights into the modulation of fruit ripening, metabolism, and quality in post-harvest kiwifruits.


Assuntos
Actinidia/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Actinidia/enzimologia , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Ciclo do Ácido Cítrico , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica , Proteínas de Plantas/genética , Proteômica , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA