RESUMO
NEW FINDINGS: What is the central question of this study? White matter lesions (WMLs) are a brain disease characterized by altered brain structural and functional connectivity, but findings have shown an inconsistent pattern: are there distinct cortical thickness changes in patients with WMLs subtypes? What is the main finding and its importance? Patients with WMLs with non-dementia vascular cognitive impairment and WMLs with vascular dementia showed distinct pathophysiology in cortical thickness. These neural correlates of WMLs should be considered in future treatment. ABSTRACT: The effect of cortical thickness on white matter lesions (WMLs) in patients with distinct vascular cognitive impairments is relatively unknown. This study investigated the correlation between cortical thickness and vascular cognitive manifestations. WML patients and healthy controls from Beijing Tiantan Hospital between 2014 and 2018 were included. The patients were further divided into two subgroups, namely WMLs with non-dementia vascular cognitive impairment (WML-VCIND) and WMLs with vascular dementia (WML-VaD) according to the Clinical Dementia Rating (CDR) scale and the Beijing version of the Montreal Cognitive Assessment (MoCA). Changes in cortical thickness were calculated using FreeSurfer. Pearson's correlation analysis was performed to explore the relationship between cognitive manifestations and cortical thickness in WML patients. Forty-five WML patients and 23 healthy controls were recruited. The WML group exhibited significant difference in cortical thickness compared to the control group. Significantly decreased cortical thickness in the middle and superior frontal gyri, middle temporal gyrus, angular gyrus and insula was found in the WML-VaD versus WML-VCIND subgroup. Cortical thickness deficits of the left caudal middle frontal gyrus (r = 0.451, P = 0.002), left rostral middle frontal gyrus (r = 0.514, P < 0.001), left superior frontal gyrus (r = 0.410, P = 0.006), right middle temporal gyrus (r = 0.440, P = 0.003), right pars triangularis (r = 0.462, P = 0.002), right superior frontal gyrus (r = 0.434, P = 0.004) and right insula (r = 0.499, P = 0.001) were positively correlated with the MoCA score in WML patients. The specific pattern of cortical thickness deficits in the WML-VaD subgroup revealed the pathophysiology of WMLs, which should be considered in future treatment of WMLs.
Assuntos
Disfunção Cognitiva , Demência , Substância Branca , Encéfalo , Disfunção Cognitiva/patologia , Demência/patologia , Humanos , Imageamento por Ressonância Magnética , Substância Branca/patologiaRESUMO
Astrocytes are the most widespread and heterogeneous glial cells in the central nervous system and key regulators for brain development. They are capable of receiving neurotransmitters produced by synaptic activities and regulating synaptic functions by releasing gliotransmitters as part of the tripartite synapse. In addition to communicating with neurons at synaptic levels, astrocytes can integrate into inhibitory neural networks to interact with neurons in neuronal circuits. Astrocytes are closely related to the pathogenesis and pathological processes of neurodegenerative diseases (NDs). Recently, optogenetics has now been applied to reveal the function of astrocytes in physiology and pathology. Herein, we discuss the possibility whether optogenetics could be used to control the release of gliotransmitters and regulate astrocytic membrane channels. Thus, the capability of modulating the bidirectional interactions between astrocytes and neurons in both synaptic and neuronal networks via optogenetics is evaluated. Furthermore, we discuss that manipulating astrocytes via optogenetics might be an effective way to investigate the potential therapeutic strategy for NDs.
Assuntos
Astrócitos/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Neuroglia/metabolismo , Neurotransmissores/metabolismo , Optogenética/métodosRESUMO
The CA3 subregion of the hippocampus is important for rapid encoding, storage and retrieval of associative memories. Lesions and pharmacological inhibitions of hippocampal CA3 suggest that it is essential for different memories. However, how CA3 functions in spatial and episodic memory in different time scales (i.e. short-term versus long term) without permanent lesions has not been systematically investigated yet. Taking advantage of the chemogenetic access to opsins, this study used luminopsins, fusion proteins of luciferase and optogenetic elements, to manipulate neuronal activity in CA3 during memory tasks over a range of spatial and temporal scales. In this study, we found that excitation or inhibition of CA3 neurons had no significant effects on long-term spatial or episodic memory, but had remarkable effects on spatial working memory, spatial short-term memory as well as episodic short-term memory. In addition, stimulation of CA3 neurons altered the expression levels of NR2A. Intracerebral injection of receptor inhibitors further confirmed that NR2A is crucial to spatial working memory, which is consistent with the luminopsins experiments. These findings indicate that CA3 maintains a specific role on spatial and episodic memory over a short period of time.
Assuntos
Região CA3 Hipocampal/fisiologia , Memória Episódica , Neurônios/fisiologia , Memória Espacial/fisiologia , Animais , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Opsinas , OptogenéticaRESUMO
Protein aggregation is a prominent feature of many neurodegenerative disorders including Parkinson's disease (PD). Aggregation of alpha-synuclein (SNCA) may underlie the pathology of PD. They are the main components of Lewy bodies and dystrophic neurites that are the intraneuronal inclusions characteristic of the disease. We have demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibited SNCA aggregation, which made it a candidate for therapeutic intervention in PD. Three methods were used: SNCA fibril formation inhibition by EGCG in incubates; inhibition of the SNCA fluorophore A-Syn-HiLyte488 binding to plated SNCA in microwells; and inhibition of the A-Syn-HiLyte488 probe binding to aggregated SNCA in postmortem PD tissue. Recombinant human SNCA was incubated under conditions that result in fibril formation. The aggregation was blocked by 100 nM EGCG in a concentration-dependent manner, as shown by an absence of thioflavin T binding. In the microplate assay system, the ED50 of EGCG inhibition of A-Syn-HiLyte488 binding to coated SNCA was 250 nM. In the PD tissue based assay, SNCA aggregates were recognized by incubation with 7 nM of A-Syn-HiLyte488. This binding was blocked by EGCG in a concentration dependent manner. The SNCA amino acid sites, which potentially interacted with EGCG, were detected on peptide membranes. It was implicated that EGCG binds to SNCA by instable hydrophobic interactions. In this study, we suggested that EGCG could be a potent remodeling agent of SNCA aggregates and a potential disease modifying drug for the treatment of PD and other α-synucleinopathies.
Assuntos
Catequina/análogos & derivados , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Catequina/farmacologia , Células Cultivadas , Humanos , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologiaRESUMO
OBJECTIVE: To explore the influence of the DNA repair gene ERCC2 single nucleotide polymorphisms (SNPs) rs13181, rs1618536, and rs1799793 on male idiopathic infertility in Ningxia, China. METHODS: Using MassArray, we conducted a case-control study and genotyped three ERCC2 SNPs rs13181, rs1618536, and rs1799793 for 351 males (aged 31.0 +/- 4.2 years) with idiopathic infertility and another 327 normal fertile men (aged 33.0 +/- 5.9 years) as controls. RESULTS: The ERCC2 AnyG-anyA-anyA genotypes were significantly associated with an increased risk of idiopathic infertility (OR 0.414, 95% CI 0.176 - 0.970), while the three single ERCC2 SNPs rs13181, rs1618536, and rs1799793 showed no significant differences between the cases and controls (P > 0.05). CONCLUSION: The ERCC2 SNPs rs13181, rs1618536, and rs1799793 play a role of interaction in male idiopathic infertility in Ningxia, contributing to the risk of the disease.
Assuntos
Infertilidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Proteína Grupo D do Xeroderma Pigmentoso/genética , Adulto , Estudos de Casos e Controles , China , Reparo do DNA , Genótipo , Humanos , MasculinoRESUMO
Autism spectrum disorder (ASD) is a group of developmental diseases characterized by social dysfunction and repetitive stereotype behaviors. Besides genetic mutations, environmental factors play important roles in the development of ASD. Valproic acid (VPA) is widely used for modeling environmental factor induced ASD in rodents. However, traditional VPA modeling is low-in-efficiency and the phenotypes often vary among different batches of experiments. To optimize this ASD-modeling method, we tested "two-hit" hypothesis by single or double exposure of VPA and poly:IC at the critical time points of embryonic and postnatal stage. The autistic-like behaviors of mice treated with two-hit schemes (embryonic VPA plus postnatal poly:IC, embryonic poly:IC plus postnatal VPA, embryonic VPA plus poly: IC, or postnatal VPA plus poly:IC) were compared with mice treated with traditional VPA protocol. The results showed that all single-hit and two-hit schemes produced core ASD phenotypes as VPA single treatment did. Only one group, namely, mice double-hit by VPA and poly:IC simultaneously at E12.5 showed severe impairment of social preference, social interaction and ultrasonic communication, as well as significant increase of grooming activity and anxiety-like behaviors, in comparation with mice treated with the traditional VPA protocol. These data demonstrated that embryonic two-hit of VPA and poly:IC is more efficient in producing ASD phenotypes in mice than the single-hit of VPA, indicating this two-hit scheme could be utilized for modeling environmental factors induced ASD.
RESUMO
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aß) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aß plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aß clearance and alleviating AD pathology. ECM remodeling also promoted Aß plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Assuntos
Doença de Alzheimer , Astrócitos , Autofagia , Modelos Animais de Doenças , Matriz Extracelular , Lisossomos , Transtornos da Memória , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Astrócitos/metabolismo , Camundongos , Matriz Extracelular/metabolismo , Lisossomos/metabolismo , Transtornos da Memória/metabolismo , Camundongos Transgênicos , MasculinoRESUMO
Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.
Assuntos
Apoptose , Catepsina B , Catepsina B/metabolismo , Apoptose/fisiologia , Piroptose , Lisossomos/metabolismoRESUMO
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of ß-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia , Peptídeos beta-Amiloides , Neurônios/patologia , SinapsesRESUMO
Mirror image pain (MIP), a clinical syndrome of contralateral pain hypersensitivity caused by unilateral injury, has been identified in various neuropathological conditions. Gap junctional protein Connexin 43 (Cx43), its phosphorylation levels and dopamine D2 receptor (DRD2) play key integrating roles in pain processing. We presume D2DR activity may affect Cx43 hemichannel opening via Cx43 phosphorylation levels to regulate MIP. This study shows that spinal astrocytic Cx43 directly interacts with DRD2 to mediate MIP. DRD2 and Cx43 expression levels were asymmetrically elevated in bilateral spinal during MIP, and DRD2 modulated the opening of primary astrocytic Cx43 hemichannels. Furthermore, Cx43 phosphorylation at Ser373 was increased during MIP, but decreased in DRD2 knockout (KO) mice. Finally, activation of spinal protein kinase A (PKA) altered the expression of Cx43 and its phosphorylation bilaterally, thus reversing the analgesic effect in DRD2 KO mice. Together, these data reveal that spinal Cx43 phosphorylation and channel opening are regulated by DRD2 via PKA activation, and that spinal Cx43 and DRD2 are key molecular sensors mediating mirror image pain.
Assuntos
Conexina 43 , Conexinas , Animais , Camundongos , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Dor/genética , Fosforilação , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismoRESUMO
Optogenetics has been plagued by invasive brain implants and thermal effects during photo-modulation. Here, two upconversion hybrid nanoparticles modified with photothermal agents, named PT-UCNP-B/G, which can modulate neuronal activities via photostimulation and thermo-stimulation under near-infrared laser irradiation at 980 nm and 808 nm, respectively, are demonstrated. PT-UCNP-B/G emits visible light (410-500 nm or 500-570 nm) through the upconversion process at 980 nm, while they exhibit efficient photothermal effect at 808 nm with no visible emission and tissue damage. Intriguingly, PT-UCNP-B significantly activates extracellular sodium currents in neuro2a cells expressing light-gated channelrhodopsin-2 (ChR2) ion channels under 980-nm irradiation, and inhibits potassium currents in human embryonic kidney 293 cells expressing the voltage-gated potassium channels (KCNQ1) under 808-nm irradiation in vitro. Furthermore, deep-brain bidirectional modulation of feeding behavior is achieved under tether-free 980 or 808-nm illumination (0.8 W cm-2 ) in mice stereotactically injected with PT-UCNP-B in the ChR2-expressing lateral hypothalamus region. Thus, PT-UCNP-B/G creates new possibility of utilizing both light and heat to modulate neural activities and provides a viable strategy to overcome the limits of optogenetics.
Assuntos
Nanopartículas , Neurônios , Camundongos , Animais , Humanos , Neurônios/fisiologia , Fototerapia , Raios Infravermelhos , Encéfalo/fisiologiaRESUMO
Regulation of neuroinflammation and ß-amyloid (Aß) production are critical factors in the pathogenesis of Alzheimer's disease (AD). Cathepsin E (CatE), an aspartic protease, is widely studied as an inducer of growth arrest and apoptosis in several types of cancer cells. However, the function of CatE in AD is unknown. In this study, we demonstrated that the ablation of CatE in human amyloid precursor protein knock-in mice, called APPNL-G-F mice, significantly reduced Aß accumulation, neuroinflammation, and cognitive impairments. Mechanistically, microglial CatE is involved in the secretion of soluble TNF-related apoptosis-inducing ligand, which plays an important role in microglia-mediated NF-κB-dependent neuroinflammation and neuronal Aß production by beta-site APP cleaving enzyme 1. Furthermore, cannula-delivered CatE inhibitors improved memory function and reduced Aß accumulation and neuroinflammation in AD mice. Our findings reveal that CatE as a modulator of microglial activation and neurodegeneration in AD and suggest CatE as a therapeutic target for AD by targeting neuroinflammation and Aß pathology.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Catepsina E/genética , Catepsina E/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Doenças NeuroinflamatóriasRESUMO
The hippocampal CA3 region, that is involved in the encoding and retrieval of spatial memory, is found to be synaptically impaired in the early-onset of Alzheimer's disease (AD). It is reported optogenetic manipulation of DG or CA1 can rescue the memory impairment of APP/PS1 mice, however, how CA3 region contributes to AD-related deficits in cognitive function is still unknown. Our work shows optogenetic stimulation of CA3 pyramidal neurons (PNs) significantly restores the impaired spatial short-term memory of APP/PS1 mice. This enhances the anatomical synaptic density/strength and synaptic plasticity as well as activates astrocytes. Chemogenetic inhibiting the activity of CA3 astrocytes reverses the effect of optogenetic stimulation of CA3 PNs that leads to reduced anatomical synaptic density/strength, decreased synaptic protein and AMPA receptors GluA3/4, thus disrupting the cognitive restoration of APP/PS1 mice. These results reveal the molecular mechanism of optogenetic activation of CA3 PNs on restoration of the spatial short-term memory of APP/PS1 mice and unveil a potential strategy of manipulating CA3 for AD treatment.
Assuntos
Doença de Alzheimer , Optogenética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Memória de Curto Prazo , Camundongos , Camundongos Transgênicos , Células Piramidais/metabolismoRESUMO
The mechanisms of the transplantation of neural stem cells (NSCs) in the treatment of Alzheimer's disease remain poorly understood. In this study, NSCs were transplanted into the hippocampal CA1 region of the rTg (tau P301L) 4510 mouse model, a tauopathy model that is thought to reflect the tau pathology associated with Alzheimer's disease. The results revealed that NSC transplantation reduced the abnormal aggregation of tau, resulting in significant improvements in the short-term memory of the tauopathy model mice. Compared with wild-type and phosphate-buffered saline (PBS)-treated mice, mice that received NSC transplantations were characterized by changes in the expression of multiple proteins in brain tissue, particularly those related to the regulation of tau aggregation or misfolding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) function analysis revealed that these proteins were primarily enriched in pathways associated with long-term potentiation, neurogenesis, and other neurobiological processes. Changes in the expression levels of key proteins were verified by western blot assays. These data provided clues to improve the understanding of the functional capacity associated with NSC transplantation in Alzheimer's disease treatment. This study was approved by the Beijing Animal Ethics Association and Ethics Committee of Beijing Institute of Technology (approval No. SYXK-BIT-school of life science-2017-M03) in 2017.
RESUMO
Social behaviors entail responses to social information and requires the perception and integration of social cues through a complex cognition process that involves attention, memory, motivation, and emotion. Neurobiological and molecular mechanisms underlying social behavior are highly conserved across species, and inter- and intra-specific variability observed in social behavior can be explained to large extent by differential activity of a conserved neural network. However, neural microcircuits and precise networks involved in social behavior remain mysterious. In this review, we summarize the microcircuits and input-output circuits on the molecular, cellular, and network levels of different social interactions, such as social exploration, social hierarchy, social memory, and social preference. This review provides a broad view of how multiple microcircuits and input-output circuits converge on the medial prefrontal cortex, hippocampus, and amygdala to regulate complex social behaviors, as well as a potential novel view for better control over pathological development.
Assuntos
Tonsila do Cerebelo , Comportamento Social , Atenção , Emoções , Hipocampo , Vias Neurais , Córtex Pré-FrontalRESUMO
Alzheimer's disease (AD) is a neurodegenerative disease with complex pathological characteristics, whose etiology and pathogenesis are still unclear. Over the past few decades, the role of the extracellular matrix (ECM) has gained importance in neurodegenerative disease. In this review, we describe the role of the ECM in AD, focusing on the aspects of synaptic transmission, amyloid-ß-plaque generation and degradation, Tau-protein production, oxidative-stress response, and inflammatory response. The function of ECM in the pathological process of AD will inform future research on the etiology and pathogenesis of AD.
RESUMO
The hippocampal CA3 contributes to spatial working memory (SWM), but which stage of SWM the CA3 neurons act on and whether the lateralization of CA3 function occurs in SWM is also unknown. Here, we reveal increased neural activity in both sample and choice phases of SWM. Left CA3 (LCA3) neurons show higher sensitivity in the choice phase during the correct versus error trials compared with right CA3 (RCA3) neurons. LCA3 initiates firing prior to RCA3 in the choice phase. Optogenetic suppression of pyramidal neurons in LCA3 disrupts SWM only in the choice phase. Furthermore, we discover that parvalbumin (PV) neurons, rather than cholinergic neurons in the medial septum (DB were cholinergic neurons), can project directly to unilateral CA3. Selective suppression of PV neurons in the MS projecting to LCA3 impairs SWM. The findings suggest that MSPV-LCA3 projection plays a crucial role in manipulating the lateralization of LCA3 in the retrieval of SWM.
Assuntos
Região CA3 Hipocampal/fisiologia , Memória de Curto Prazo , Neurônios/fisiologia , Memória Espacial , Animais , Comportamento Animal , Mapeamento Encefálico/métodos , Neurônios Colinérgicos/fisiologia , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/fisiologiaRESUMO
BACKGROUND: Hippocampal neurogenesis has been widely considered as one of the potential biological mechanisms for the treatment of depression caused by chronic stress. Many natural products have been reported to be beneficial for neurogenesis. OBJECTIVES: The present study is designed to investigate the effect of dragon's blood extract (DBE) and its biologically active compound, pterostilbene (PTE), on hippocampal neurogenesis. METHODS: The male Sprague-Dawley (SD) rats were used in this study, which were maintained on the normal, DBE and PTE diet groups for 4 weeks before dissection in the normal rat model and behavioral testing in the CUS depression rat model. Meanwhile, DMI-treated rats are subcutaneously injected with DMI (10 mg/kg, i.p.). RESULTS: Results revealed that DBE and PTE have the ability to promote hippocampal neurogenesis. DBE and PTE also promoted the proliferation of neural stem cells isolated from the brain of suckling rats. Oral administration of DBE and PTE induced the proliferation, migration, and differentiation of neural progenitor cells (NPCs) in chronic unexpected stressed (CUS) model rats, and improved the behavioral ability and alleviated depress-like symptoms of CUS rats. It was also observed that PTE treatment significantly induced the expression of neurogenesis-related factors, including BDNF, pERK, and pCREB. CONCLUSION: Oral administration of PTE could affect neurogenesis and it is likely to be achieved via BDNF/ERK/CREB-associated signaling pathways.
Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Pterocarpus , Estilbenos/uso terapêutico , Animais , Antidepressivos/farmacologia , Células Cultivadas , Depressão/metabolismo , Depressão/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estilbenos/farmacologiaRESUMO
α-synclein (αS) aggregation is a representative molecular feature of the pathogenesis of Parkinson's disease (PD). Epigallocatechin gallate (EGCG) can prevent αS aggregation in vitro. However, the in vivo effects of PD treatment are poor due to the obstacles of EGCG accumulation in dopaminergic neurons, such as the blood brain barrier and high binding affinities between EGCG and membrane proteins. Therefore, the key to PD treatment lies in visual examination of EGCG accumulation in dopaminergic neurons. Methods: DSPE-PEG-B6, DSPE-PEG-MA, DSPE-PEG-phenylboronic acid, and superparamagnetic iron oxide nanocubes were self-assembled into tracing nanoparticles (NPs). EGCG was then conjugated on the surface of the NPs through the formation of boronate ester bonds to form a "cell-addictive" dual-target traceable nanodrug (B6ME-NPs). B6ME-NPs were then used for PD treatment via intravenous injection. Results: After treatment with B6ME-NPs, the PD-like characteristics was alleviated significantly. First, the amount of EGCG accumulation in PD lesions was markedly enhanced and traced via magnetic resonance imaging. Further, αS aggregation was greatly inhibited. Finally, the dopaminergic neurons were considerably increased. Conclusion: Due to their low price, simple preparation, safety, and excellent therapeutic effect on PD, B6ME-NPs are expected to have potential application in PD treatment.
Assuntos
Catequina/análogos & derivados , Neurônios Dopaminérgicos/metabolismo , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Doença de Parkinson/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Catequina/administração & dosagem , Catequina/farmacocinética , Linhagem Celular , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Humanos , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Resultado do Tratamento , alfa-Sinucleína/análiseRESUMO
γ-Secretase has been a therapeutical target for its key role in cleaving APP to generate ß-amyloid (Aß), the primary constituents of senile plaques and a hallmark of Alzheimer's disease (AD) pathology. Recently, γ-secretase-associating proteins showed promising role in specifically modulating APP processing while sparing Notch signaling; however, the underlying mechanism is still unclear. A co-immunoprecipitation (Co-IP) coupled with mass spectrometry proteomic assay for Presenilin1 (PS1, the catalytic subunit of γ-secretase) was firstly conducted to find more γ-secretase-associating proteins. Gene ontology analysis of these results identified Rab21 as a potential PS1 interacting protein, and the interaction between them was validated by reciprocal Co-IP and immunofluorescence assay. Then, molecular and biochemical methods were used to investigate the effect of Rab21 on APP processing. Results showed that overexpression of Rab21 enhanced Aß generation, while silencing of Rab21 reduced the accumulation of Aß, which resulted due to change in γ-secretase activity rather than α- or ß-secretase. Finally, we demonstrated that Rab21 had no effect on γ-secretase complex synthesis or metabolism but enhanced PS1 endocytosis and translocation to late endosome/lysosome. In conclusion, we identified a novel γ-secretase-associating protein Rab21 and illustrate that Rab21 promotes γ-secretase internalization and translocation to late endosome/lysosome. Moreover, silencing of Rab21 decreases the γ-secretase activity in APP processing thus production of Aß. All these results open new gateways towards the understanding of γ-secretase-associating proteins in APP processing and make inhibition of Rab21 a promising strategy for AD therapy.